Expand all Collapse all | Results 1 - 11 of 11 |
1. CJM Online first
The Bochner-Schoenberg-Eberlein property and spectral synthesis for certain Banach algebra products Associated with two commutative Banach algebras $A$ and $B$ and
a character $\theta$ of $B$ is a certain Banach algebra product
$A\times_\theta B$, which is a splitting extension of $B$ by
$A$. We investigate two topics for the algebra $A\times_\theta
B$ in relation to the corresponding ones of $A$ and $B$. The
first one is the Bochner-Schoenberg-Eberlein property and the
algebra of Bochner-Schoenberg-Eberlein functions on the spectrum,
whereas the second one concerns the wide range of spectral synthesis
problems for $A\times_\theta B$.
Keywords:commutative Banach algebra, splitting extension, Gelfand spectrum, set of synthesis, weak spectral set, multiplier algebra, BSE-algebra, BSE-function Categories:46J10, 46J25, 43A30, 43A45 |
2. CJM Online first
Growth of Selmer groups of CM Abelian varieties Let $p$ be an odd prime. We study the variation of the $p$-rank of
the Selmer group of Abelian varieties with complex multiplication in
certain towers of number fields.
Keywords:Selmer group, Abelian variety with complex multiplication, $\mathbb{Z}_p$-extension, $p$-Hilbert class tower Categories:11G15, 11G10, 11R23, 11R34 |
3. CJM 2013 (vol 66 pp. 596)
The Ordered $K$-theory of a Full Extension Let $\mathfrak{A}$ be a $C^{*}$-algebra with real rank zero which has
the stable weak cancellation property. Let $\mathfrak{I}$ be an ideal
of $\mathfrak{A}$ such that $\mathfrak{I}$ is stable and satisfies the
corona factorization property. We prove that
$
0 \to \mathfrak{I} \to \mathfrak{A} \to \mathfrak{A} / \mathfrak{I} \to 0
$
is a full extension if and only if the extension is stenotic and
$K$-lexicographic. {As an immediate application, we extend the
classification result for graph $C^*$-algebras obtained by Tomforde
and the first named author to the general non-unital case. In
combination with recent results by Katsura, Tomforde, West and the
first author, our result may also be used to give a purely
$K$-theoretical description of when an essential extension of two
simple and stable graph $C^*$-algebras is again a graph
$C^*$-algebra.}
Keywords:classification, extensions, graph algebras Categories:46L80, 46L35, 46L05 |
4. CJM 2011 (vol 64 pp. 1036)
Harmonic Analysis Related to Homogeneous Varieties in Three Dimensional Vector Spaces over Finite Fields |
Harmonic Analysis Related to Homogeneous Varieties in Three Dimensional Vector Spaces over Finite Fields In this paper we study the extension problem, the
averaging problem, and the generalized ErdÅs-Falconer distance
problem associated with arbitrary homogeneous varieties in three
dimensional vector spaces over finite fields. In the case when the
varieties do not contain any plane passing through the origin, we
obtain the best possible results on the aforementioned three problems. In
particular, our result on the extension problem modestly generalizes
the result by Mockenhaupt and Tao who studied the particular conical
extension problem. In addition, investigating the Fourier decay on
homogeneous varieties enables us to give complete mapping properties
of averaging operators. Moreover, we improve the size condition on a
set such that the cardinality of its distance set is nontrivial.
Keywords:extension problems, averaging operator, finite fields, ErdÅs-Falconer distance problems, homogeneous polynomial Categories:42B05, 11T24, 52C17 |
5. CJM 2010 (vol 63 pp. 200)
An Explicit Polynomial Expression for a $q$-Analogue of the 9-$j$ Symbols Using standard transformation and summation formulas for basic
hypergeometric series we obtain an explicit polynomial form of the
$q$-analogue of the 9-$j$ symbols, introduced by the author in a
recent publication. We also consider a limiting case in which the
9-$j$ symbol factors into two Hahn polynomials. The same
factorization occurs in another limit case of the corresponding
$q$-analogue.
Keywords:6-$j$ and 9-$j$ symbols, $q$-analogues, balanced and very-well-poised basic hypergeometric series, orthonormal polynomials in one and two variables, Racah and $q$-Racah polynomials and their extensions Categories:33D45, 33D50 |
6. CJM 2010 (vol 62 pp. 1037)
Riemann Extensions of Torsion-Free Connections with Degenerate Ricci Tensor
{Correspondence} between torsion-free connections with {nilpotent skew-symmetric curvature operator} and IP Riemann
extensions is shown. Some consequences are derived in the study of
four-dimensional IP metrics and locally homogeneous affine surfaces.
Keywords:Walker metric, Riemann extension, curvature operator, projectively flat and recurrent affine connection Categories:53B30, 53C50 |
7. CJM 2008 (vol 60 pp. 892)
The Second Cohomology of Current Algebras of General Lie Algebras Let $A$ be a unital commutative associative algebra over a field of
characteristic zero, $\k$ a Lie algebra, and
$\zf$ a vector space, considered as a trivial module of the Lie algebra
$\gf := A \otimes \kf$. In this paper, we give a
description of the cohomology space $H^2(\gf,\zf)$
in terms of easily accessible data associated with $A$ and $\kf$.
We also discuss the topological situation, where
$A$ and $\kf$ are locally convex algebras.
Keywords:current algebra, Lie algebra cohomology, Lie algebra homology, invariant bilinear form, central extension Categories:17B56, 17B65 |
8. CJM 2007 (vol 59 pp. 1135)
Sobolev Extensions of HÃ¶lder Continuous and Characteristic Functions on Metric Spaces We study when characteristic and H\"older continuous functions
are traces of Sobolev functions on doubling metric measure spaces.
We provide analytic and geometric conditions sufficient for extending
characteristic and H\"older continuous functions into globally defined
Sobolev functions.
Keywords:characteristic function, Newtonian function, metric space, resolutivity, HÃ¶lder continuous, Perron solution, $p$-harmonic, Sobolev extension, Whitney covering Categories:46E35, 31C45 |
9. CJM 2005 (vol 57 pp. 351)
Extensions by Simple $C^*$-Algebras: Quasidiagonal Extensions Let $A$ be an amenable separable $C^*$-algebra and $B$ be a non-unital
but $\sigma$-unital simple $C^*$-algebra with continuous scale.
We show that two essential extensions
$\tau_1$ and $\tau_2$ of $A$ by $B$ are approximately
unitarily equivalent if and only if
$$
[\tau_1]=[\tau_2] \text{ in } KL(A, M(B)/B).
$$
If $A$ is assumed to satisfy the Universal Coefficient Theorem,
there is a bijection from approximate unitary equivalence
classes of the above mentioned extensions to
$KL(A, M(B)/B)$.
Using $KL(A, M(B)/B)$, we compute exactly when an essential extension
is quasidiagonal. We show that quasidiagonal extensions
may not be approximately trivial.
We also study the approximately trivial extensions.
Keywords:Extensions, Simple $C^*$-algebras Categories:46L05, 46L35 |
10. CJM 2001 (vol 53 pp. 944)
ReprÃ©sentations irrÃ©ductibles bornÃ©es des groupes de Lie exponentiels Let $G$ be a solvable exponential Lie group. We characterize all the
continuous topologically irreducible bounded representations $(T,
\calU)$ of $G$ on a Banach space $\calU$ by giving a $G$-orbit in
$\frn^*$ ($\frn$ being the nilradical of $\frg$), a topologically
irreducible representation of $L^1(\RR^n, \o)$, for a certain weight
$\o$ and a certain $n \in \NN$, and a topologically simple extension
norm. If $G$ is not symmetric, \ie, if the weight $\o$ is
exponential, we get a new type of representations which are
fundamentally different from the induced representations.
Soit $G$ un groupe de Lie r\'esoluble exponentiel. Nous
caract\'erisons toutes les repr\'esentations $(T, \calU)$ continues
born\'ees topologiquement irr\'eductibles de $G$ dans un espace de
Banach $\calU$ \`a l'aide d'une $G$-orbite dans $\frn^*$ ($\frn$
\'etant le radical nilpotent de $\frg$), d'une repr\'esentation
topologiquement irr\'eductible de $L^1(\RR^n, \o)$, pour un certain
poids $\o$ et un certain $n \in \NN$, d'une norme d'extension
topologiquement simple. Si $G$ n'est pas sym\'etrique, c. \`a d. si
le poids $\o$ est exponentiel, nous obtenons un nouveau type de
repr\'esentations qui sont fondamentalement diff\'erentes des
repr\'esentations induites.
Keywords:groupe de Lie rÃ©soluble exponentiel, reprÃ©sentation bornÃ©e topologiquement irrÃ©ductible, orbite, norme d'extension, sous-espace invariant, idÃ©al premier, idÃ©al primitif Category:43A20 |
11. CJM 1998 (vol 50 pp. 1253)
Integral representation of $p$-class groups in ${\Bbb Z}_p$-extensions and the Jacobian variety For an arbitrary finite Galois $p$-extension $L/K$ of
$\zp$-cyclotomic number fields of $\CM$-type with Galois group $G =
\Gal(L/K)$ such that the Iwasawa invariants $\mu_K^-$, $ \mu_L^-$
are zero, we obtain unconditionally and explicitly the Galois
module structure of $\clases$, the minus part of the $p$-subgroup
of the class group of $L$. For an arbitrary finite Galois
$p$-extension $L/K$ of algebraic function fields of one variable
over an algebraically closed field $k$ of characteristic $p$ as its
exact field of constants with Galois group $G = \Gal(L/K)$ we
obtain unconditionally and explicitly the Galois module structure
of the $p$-torsion part of the Jacobian variety $J_L(p)$ associated
to $L/k$.
Keywords:${\Bbb Z}_p$-extensions, Iwasawa's theory, class group, integral representation, fields of algebraic functions, Jacobian variety, Galois module structure Categories:11R33, 11R23, 11R58, 14H40 |