Expand all Collapse all | Results 1 - 5 of 5 |
1. CJM Online first
All Irrational Extended Rotation Algebras are AF Algebras Let $\theta\in[0, 1]$ be any irrational number. It is shown that the
extended rotation algebra $\mathcal B_\theta$ introduced in
a previous paper is always an AF algebra.
Keywords:irrational rotation algebra, extended irrational rotation algebra, AF-embedding |
2. CJM 2010 (vol 63 pp. 436)
Simplicial Complexes and Open Subsets of Non-Separable LF-Spaces
Let $F$ be a non-separable LF-space homeomorphic to
the direct sum $\sum_{n\in\mathbb{N}} \ell_2(\tau_n)$,
where $\aleph_0 < \tau_1 < \tau_2 < \cdots$.
It is proved that
every open subset $U$ of $F$ is homeomorphic to the product $|K| \times F$
for some locally finite-dimensional simplicial complex $K$ such that
every vertex $v \in K^{(0)}$ has the star $\operatorname{St}(v,K)$
with $\operatorname{card} \operatorname{St}(v,K)^{(0)} < \tau = \sup\tau_n$
(and $\operatorname{card} K^{(0)} \le \tau$),
and, conversely, if $K$ is such a simplicial complex,
then the product $|K| \times F$ can be embedded in $F$ as an open set,
where $|K|$ is the polyhedron of $K$ with the metric topology.
Keywords:LF-space, open set, simplicial complex, metric topology, locally finite-dimensional, star, small box product, ANR, $\ell_2(\tau)$, $\ell_2(\tau)$-manifold, open embedding, $\sum_{i\in\mathbb{N}}\ell_2(\tau_i)$ Categories:57N20, 46A13, 46T05, 57N17, 57Q05, 57Q40 |
3. CJM 2008 (vol 60 pp. 961)
About the Defectivity of Certain Segre--Veronese Varieties We study the regularity of the higher secant varieties of $\PP^1\times
\PP^n$, embedded with divisors of type $(d,2)$ and $(d,3)$. We
produce, for the highest defective cases, a ``determinantal'' equation
of the secant variety. As a corollary, we prove that the Veronese
triple embedding of $\PP^n$ is not Grassmann defective.
Keywords:Waring problem, Segre--Veronese embedding, secant variety, Grassmann defectivity Categories:14N15, 14N05, 14M12 |
4. CJM 2004 (vol 56 pp. 1068)
Regular Embeddings of Generalized Hexagons We classify the generalized hexagons which are laxly
embedded in projective space such that the embedding is flat and
polarized. Besides the standard examples related to the hexagons
defined over the algebraic groups of type $\ssG_2$, $^3\ssD_4$ and
$^6\ssD_4$ (and occurring in projective dimensions $5,6,7$), we
find new examples in unbounded dimension related to the mixed
groups of type $\ssG_2$.
Keywords:Moufang generalized hexagons, embeddings, mixed hexagons, classical, hexagons Categories:51E12, 51A45 |
5. CJM 1999 (vol 51 pp. 585)
Smooth Finite Dimensional Embeddings We give necessary and sufficient conditions for a norm-compact subset
of a Hilbert space to admit a $C^1$ embedding into a finite dimensional
Euclidean space. Using quasibundles, we prove a structure theorem
saying that the stratum of $n$-dimensional points is contained in an
$n$-dimensional $C^1$ submanifold of the ambient Hilbert space. This
work sharpens and extends earlier results of G.~Glaeser on paratingents.
As byproducts we obtain smoothing theorems for compact subsets of
Hilbert space and disjunction theorems for locally compact subsets
of Euclidean space.
Keywords:tangent space, diffeomorphism, manifold, spherically compact, paratingent, quasibundle, embedding Categories:57R99, 58A20 |