Expand all Collapse all | Results 1 - 3 of 3 |
1. CJM Online first
Non-tangential Maximal Function Characterizations of Hardy Spaces Associated with Degenerate Elliptic Operators |
Non-tangential Maximal Function Characterizations of Hardy Spaces Associated with Degenerate Elliptic Operators Let $w$ be either in the Muckenhoupt class of $A_2(\mathbb{R}^n)$ weights
or in the class of $QC(\mathbb{R}^n)$ weights, and
$L_w:=-w^{-1}\mathop{\mathrm{div}}(A\nabla)$
the degenerate elliptic operator on the Euclidean space $\mathbb{R}^n$,
$n\ge 2$. In this article, the authors establish the non-tangential
maximal function characterization
of the Hardy space $H_{L_w}^p(\mathbb{R}^n)$ associated with $L_w$ for
$p\in (0,1]$ and, when $p\in (\frac{n}{n+1},1]$ and
$w\in A_{q_0}(\mathbb{R}^n)$ with $q_0\in[1,\frac{p(n+1)}n)$,
the authors prove that the associated Riesz transform $\nabla L_w^{-1/2}$
is bounded from $H_{L_w}^p(\mathbb{R}^n)$ to the weighted classical
Hardy space $H_w^p(\mathbb{R}^n)$.
Keywords:degenerate elliptic operator, Hardy space, square function, maximal function, molecule, Riesz transform Categories:42B30, 42B35, 35J70 |
2. CJM 2002 (vol 54 pp. 1280)
Besov Spaces and Hausdorff Dimension For Some Carnot-CarathÃ©odory Metric Spaces We regard a system of left invariant vector fields $\mathcal{X}=\{X_1,\dots,X_k\}$
satisfying the H\"ormander condition and the related Carnot-Carath\'eodory metric on a
unimodular Lie group $G$. We define Besov spaces corresponding to the sub-Laplacian
$\Delta=\sum X_i^2$ both with positive and negative smoothness. The atomic
decomposition of the spaces is given. In consequence we get the distributional
characterization of the Hausdorff dimension of Borel subsets with the Haar measure
zero.
Keywords:Besov spaces, sub-elliptic operators, Carnot-CarathÃ©odory metric, Hausdorff dimension Categories:46E35, 43A15, 28A78 |
3. CJM 2002 (vol 54 pp. 945)
Approximation on Closed Sets by Analytic or Meromorphic Solutions of Elliptic Equations and Applications |
Approximation on Closed Sets by Analytic or Meromorphic Solutions of Elliptic Equations and Applications Given a homogeneous elliptic partial differential operator $L$ with constant
complex coefficients and a class of functions (jet-distributions) which
are defined on a (relatively) closed subset of a domain $\Omega$ in $\mathbf{R}^n$ and
which belong locally to a Banach space $V$, we consider the problem of
approximating in the norm of $V$ the functions in this class by ``analytic''
and ``meromorphic'' solutions of the equation $Lu=0$. We establish new Roth,
Arakelyan (including tangential) and Carleman type theorems for a large class
of Banach spaces $V$ and operators $L$. Important applications to boundary
value problems of solutions of homogeneous elliptic partial differential
equations are obtained, including the solution of a generalized Dirichlet
problem.
Keywords:approximation on closed sets, elliptic operator, strongly elliptic operator, $L$-meromorphic and $L$-analytic functions, localization operator, Banach space of distributions, Dirichlet problem Categories:30D40, 30E10, 31B35, 35Jxx, 35J67, 41A30 |