1. CJM Online first
 Chandee, Vorrapan; David, Chantal; Koukoulopoulos, Dimitris; Smith, Ethan

The frequency of elliptic curve groups over prime finite fields
Letting $p$ vary over all primes and $E$ vary over all elliptic
curves over the finite field $\mathbb{F}_p$, we study the frequency to
which a given group $G$ arises as a group of points $E(\mathbb{F}_p)$.
It is wellknown that the only permissible groups are of the
form $G_{m,k}:=\mathbb{Z}/m\mathbb{Z}\times \mathbb{Z}/mk\mathbb{Z}$.
Given such a candidate group, we let $M(G_{m,k})$ be the frequency
to which the group $G_{m,k}$ arises in this way.
Previously, the second and fourth named authors determined an
asymptotic formula for $M(G_{m,k})$ assuming a conjecture about primes
in short arithmetic progressions. In this paper, we prove several
unconditional bounds for $M(G_{m,k})$, pointwise and on average. In
particular, we show that $M(G_{m,k})$ is bounded above by a constant
multiple of the expected quantity when $m\le k^A$ and that the
conjectured asymptotic for $M(G_{m,k})$ holds for almost all groups
$G_{m,k}$ when $m\le k^{1/4\epsilon}$.
We also apply our methods to study the frequency to which a given
integer $N$ arises as the group order $\#E(\mathbb{F}_p)$.
Keywords:average order, elliptic curves, primes in short intervals Categories:11G07, 11N45, 11N13, 11N36 

2. CJM 2014 (vol 67 pp. 848)
 Köck, Bernhard; Tait, Joseph

Faithfulness of Actions on RiemannRoch Spaces
Given a faithful action of a finite group $G$ on an algebraic
curve~$X$ of genus $g_X\geq 2$, we give explicit criteria for
the induced action of~$G$ on the RiemannRoch space~$H^0(X,\mathcal{O}_X(D))$
to be faithful, where $D$ is a $G$invariant divisor on $X$ of
degree at least~$2g_X2$. This leads to a concise answer to the
question when the action of~$G$ on the space~$H^0(X, \Omega_X^{\otimes
m})$ of global holomorphic polydifferentials of order $m$ is
faithful. If $X$ is hyperelliptic, we furthermore provide an
explicit basis of~$H^0(X, \Omega_X^{\otimes m})$. Finally, we
give applications in deformation theory and in coding theory
and we discuss the analogous problem for the action of~$G$ on
the first homology $H_1(X, \mathbb{Z}/m\mathbb{Z})$ if $X$ is a Riemann surface.
Keywords:faithful action, RiemannRoch space, polydifferential, hyperelliptic curve, equivariant deformation theory, Goppa code, homology Categories:14H30, 30F30, 14L30, 14D15, 11R32 

3. CJM 2013 (vol 66 pp. 826)
 Kim, Byoung Du

SignedSelmer Groups over the $\mathbb{Z}_p^2$extension of an Imaginary Quadratic Field
Let $E$ be an elliptic curve over $\mathbb Q$ which has good supersingular
reduction at $p\gt 3$. We construct what we call the $\pm/\pm$Selmer
groups of $E$ over the $\mathbb Z_p^2$extension of an imaginary quadratic
field $K$ when the prime $p$ splits completely over $K/\mathbb Q$, and
prove they enjoy a property analogous to Mazur's control theorem.
Furthermore, we propose a conjectural connection between the
$\pm/\pm$Selmer groups and Loeffler's twovariable $\pm/\pm$$p$adic
$L$functions of elliptic curves.
Keywords:elliptic curves, Iwasawa theory Category:11Gxx 

4. CJM 2013 (vol 66 pp. 924)
 Stankewicz, James

Twists of Shimura Curves
Consider a Shimura curve $X^D_0(N)$ over the rational
numbers. We determine criteria for the twist by an AtkinLehner
involution to have points over a local field. As a corollary we give a
new proof of the theorem of JordanLivnÃ© on $\mathbf{Q}_p$ points
when $p\mid D$ and for the first time give criteria for $\mathbf{Q}_p$
points when $p\mid N$. We also give congruence conditions for roots
modulo $p$ of Hilbert class polynomials.
Keywords:Shimura curves, complex multiplication, modular curves, elliptic curves Categories:11G18, 14G35, 11G15, 11G10 

5. CJM 2011 (vol 64 pp. 1248)
 Gärtner, Jérôme

Darmon's Points and Quaternionic Shimura Varieties
In this paper, we generalize a conjecture due to Darmon and Logan in
an adelic setting. We study the relation between our construction and
Kudla's works on cycles on orthogonal Shimura varieties. This relation
allows us to conjecture a GrossKohnenZagier theorem for Darmon's
points.
Keywords:elliptic curves, StarkHeegner points, quaternionic Shimura varieties Categories:11G05, 14G35, 11F67, 11G40 

6. CJM 2011 (vol 64 pp. 81)
 David, C.; Wu, J.

Pseudoprime Reductions of Elliptic Curves
Let $E$ be an elliptic curve over $\mathbb Q$ without complex multiplication,
and for each prime
$p$ of good reduction, let $n_E(p) =  E(\mathbb F_p) $. For any integer
$b$, we consider elliptic pseudoprimes to the base
$b$. More precisely, let $Q_{E,b}(x)$ be the number of primes $p \leq
x$ such that $b^{n_E(p)} \equiv b\,({\rm mod}\,n_E(p))$, and let $\pi_{E,
b}^{\operatorname{pseu}}(x)$ be the number of compositive $n_E(p)$ such
that $b^{n_E(p)} \equiv b\,({\rm mod}\,n_E(p))$ (also called
elliptic curve pseudoprimes). Motivated by cryptography applications,
we address the problem of finding upper bounds for
$Q_{E,b}(x)$ and $\pi_{E, b}^{\operatorname{pseu}}(x)$,
generalising some of the literature for the classical pseudoprimes
to this new setting.
Keywords:RosserIwaniec sieve, group order of elliptic curves over finite fields, pseudoprimes Categories:11N36, 14H52 

7. CJM 2011 (vol 64 pp. 151)
 Miller, Steven J.; Wong, Siman

Moments of the Rank of Elliptic Curves
Fix an elliptic curve $E/\mathbb{Q}$ and assume the Riemann Hypothesis
for the $L$function $L(E_D, s)$ for every quadratic twist $E_D$ of
$E$ by $D\in\mathbb{Z}$. We combine Weil's
explicit formula with techniques of HeathBrown to derive an asymptotic
upper bound for the weighted moments of the analytic rank of $E_D$. We
derive from this an upper bound for the density of lowlying zeros of
$L(E_D, s)$ that is compatible with the random matrix models of Katz and
Sarnak. We also show that for any unbounded increasing function $f$ on $\mathbb{R}$,
the analytic rank and (assuming in addition the Birch and SwinnertonDyer
conjecture)
the number of integral points of $E_D$ are less than $f(D)$
for almost all $D$.
Keywords:elliptic curve, explicit formula, integral point, lowlying zeros, quadratic twist, rank Categories:11G05, 11G40 

8. CJM 2011 (vol 63 pp. 992)
 Bruin, Nils; Doerksen, Kevin

The Arithmetic of Genus Two Curves with (4,4)Split Jacobians
In this paper we study genus $2$ curves whose Jacobians admit a
polarized $(4,4)$isogeny to a product of elliptic curves. We consider
base fields of characteristic different from $2$ and $3$, which we do
not assume to be algebraically closed.
We obtain a full classification of all principally polarized abelian
surfaces that can arise from gluing two elliptic curves along their
$4$torsion, and we derive the relation their absolute invariants
satisfy.
As an intermediate step, we give a general description of Richelot
isogenies between Jacobians of genus $2$ curves, where previously only
Richelot isogenies with kernels that are pointwise defined over the
base field were considered.
Our main tool is a Galois theoretic characterization of genus $2$
curves admitting multiple Richelot isogenies.
Keywords:Genus 2 curves, isogenies, split Jacobians, elliptic curves Categories:11G30, 14H40 

9. CJM 2008 (vol 60 pp. 1267)
 Blake, Ian F.; Murty, V. Kumar; Xu, Guangwu

Nonadjacent Radix$\tau$ Expansions of Integers in Euclidean Imaginary Quadratic Number Fields
In his seminal papers, Koblitz proposed curves
for cryptographic use. For fast operations on these curves,
these papers also
initiated a study of the radix$\tau$ expansion of integers in the number
fields $\Q(\sqrt{3})$ and $\Q(\sqrt{7})$. The (window)
nonadjacent form of $\tau$expansion of integers in
$\Q(\sqrt{7})$ was first investigated by Solinas.
For integers in $\Q(\sqrt{3})$, the nonadjacent form
and the window nonadjacent form of the $\tau$expansion were
studied. These are used for efficient
point multiplications on Koblitz curves.
In this paper, we complete
the picture by producing the (window)
nonadjacent radix$\tau$ expansions
for integers in all Euclidean imaginary quadratic number fields.
Keywords:algebraic integer, radix expression, window nonadjacent expansion, algorithm, point multiplication of elliptic curves, cryptography Categories:11A63, 11R04, 11Y16, 11Y40, 14G50 

10. CJM 2005 (vol 57 pp. 1155)
 Cojocaru, Alina Carmen; Fouvry, Etienne; Murty, M. Ram

The Square Sieve and the LangTrotter Conjecture
Let $E$ be an elliptic curve defined over $\Q$ and without
complex multiplication. Let $K$ be a fixed imaginary quadratic field.
We find nontrivial upper bounds for the number of ordinary primes $p \leq x$
for which $\Q(\pi_p) = K$, where $\pi_p$ denotes the Frobenius endomorphism
of $E$ at $p$. More precisely, under a generalized Riemann hypothesis
we show that this number is $O_{E}(x^{\slfrac{17}{18}}\log x)$, and unconditionally
we show that this number is $O_{E, K}\bigl(\frac{x(\log \log x)^{\slfrac{13}{12}}}
{(\log x)^{\slfrac{25}{24}}}\bigr)$. We also prove that the number of imaginary quadratic
fields $K$, with $\disc K \leq x$ and of the form $K = \Q(\pi_p)$, is
$\gg_E\log\log\log x$ for $x\geq x_0(E)$. These results represent progress towards
a 1976 LangTrotter conjecture.
Keywords:Elliptic curves modulo $p$; LangTrotter conjecture;, applications of sieve methods Categories:11G05, 11N36, 11R45 
