1. CJM Online first
 Ng, P. W.; Skoufranis, P.

Closed convex hulls of unitary orbits in certain simple real rank zero C$^*$algebras
In this paper, we characterize the closures of convex hulls of
unitary orbits of selfadjoint operators in unital, separable,
simple C$^*$algebras with nontrivial tracial simplex, real
rank zero, stable rank one, and strict comparison of projections
with respect to tracial states. In addition, an upper bound
for the number of unitary conjugates in a convex combination
needed to approximate a selfadjoint are obtained.
Keywords:convex hull of unitary orbits, real rank zero C*algebras simple, eigenvalue function, majorization Category:46L05 

2. CJM 2010 (vol 62 pp. 808)
 Legendre, Eveline

Extrema of Low Eigenvalues of the DirichletNeumann Laplacian on a Disk
We study extrema of the first and the second mixed eigenvalues of the Laplacian on the disk among some families of DirichletNeumann boundary conditions. We show that the minimizer of the second eigenvalue among all mixed boundary conditions lies in a compact $1$parameter family for which an explicit description is given. Moreover, we prove that among all partitions of the boundary with bounded number of parts on which Dirichlet and Neumann conditions are imposed alternately, the first eigenvalue is maximized by the uniformly distributed partition.
Keywords: Laplacian, eigenvalues, DirichletNeumann mixed boundary condition, Zaremba's problem Categories:35J25, 35P15 

3. CJM 2009 (vol 62 pp. 109)
 Li, ChiKwong; Poon, YiuTung

Sum of Hermitian Matrices with Given Eigenvalues: Inertia, Rank, and Multiple Eigenvalues
Let $A$ and $B$ be $n\times n$ complex Hermitian (or real symmetric) matrices
with eigenvalues $a_1 \ge \dots \ge a_n$ and $b_1 \ge \dots \ge b_n$.
All possible inertia values, ranks, and multiple eigenvalues
of $A + B$ are determined. Extension of the results to the sum of $k$ matrices
with $k > 2$ and connections of the results to other subjects such
as algebraic combinatorics are also discussed.
Keywords:complex Hermitian matrices, real symmetric matrices, inertia, rank, multiple eigenvalues Categories:15A42, 15A57 

4. CJM 2008 (vol 60 pp. 572)
 Hitrik, Michael; Sj{östrand, Johannes

NonSelfadjoint Perturbations of Selfadjoint Operators in Two Dimensions IIIa. One Branching Point
This is the third in a series of works devoted to spectral
asymptotics for nonselfadjoint
perturbations of selfadjoint $h$pseudodifferential operators in dimension 2, having a
periodic classical flow. Assuming that the strength $\epsilon$
of the perturbation is in the range $h^2\ll \epsilon \ll h^{1/2}$
(and may sometimes reach even smaller values), we
get an asymptotic description of the eigenvalues in rectangles
$[1/C,1/C]+i\epsilon [F_01/C,F_0+1/C]$, $C\gg 1$, when $\epsilon F_0$ is a saddle point
value of the flow average of the leading perturbation.
Keywords:nonselfadjoint, eigenvalue, periodic flow, branching singularity Categories:31C10, 35P20, 35Q40, 37J35, 37J45, 53D22, 58J40 

5. CJM 2006 (vol 58 pp. 381)
 Jakobson, Dmitry; Nadirashvili, Nikolai; Polterovich, Iosif

Extremal Metric for the First Eigenvalue on a Klein Bottle
The first eigenvalue of the Laplacian on a surface can be viewed
as a functional on the space of Riemannian metrics of a given
area. Critical points of this functional are called extremal
metrics. The only known extremal metrics are a round sphere, a
standard projective plane, a Clifford torus and an equilateral
torus. We construct an extremal metric on a Klein bottle. It is a
metric of revolution, admitting a minimal isometric embedding into
a sphere ${\mathbb S}^4$ by the first eigenfunctions. Also, this
Klein bottle is a bipolar surface for Lawson's
$\tau_{3,1}$torus. We conjecture that an extremal metric for the
first eigenvalue on a Klein bottle is unique, and hence it
provides a sharp upper bound for $\lambda_1$ on a Klein bottle of
a given area. We present numerical evidence and prove the first
results towards this conjecture.
Keywords:Laplacian, eigenvalue, Klein bottle Categories:58J50, 53C42 

6. CJM 2003 (vol 55 pp. 91)
 Choi, ManDuen; Li, ChiKwong; Poon, YiuTung

Some Convexity Features Associated with Unitary Orbits
Let $\mathcal{H}_n$ be the real linear space of $n\times n$ complex
Hermitian matrices. The unitary (similarity) orbit $\mathcal{U}
(C)$ of $C \in \mathcal{H}_n$ is the collection of all matrices
unitarily similar to $C$. We characterize those $C \in \mathcal{H}_n$
such that every matrix in the convex hull of $\mathcal{U}(C)$ can
be written as the average of two matrices in $\mathcal{U}(C)$. The
result is used to study spectral properties of submatrices of
matrices in $\mathcal{U}(C)$, the convexity of images of $\mathcal{U}
(C)$ under linear transformations, and some related questions
concerning the joint $C$numerical range of Hermitian matrices.
Analogous results on real symmetric matrices are also discussed.
Keywords:Hermitian matrix, unitary orbit, eigenvalue, joint numerical range Categories:15A60, 15A42 

7. CJM 2001 (vol 53 pp. 470)
 Bauschke, Heinz H.; Güler, Osman; Lewis, Adrian S.; Sendov, Hristo S.

Hyperbolic Polynomials and Convex Analysis
A homogeneous real polynomial $p$ is {\em hyperbolic} with respect to
a given vector $d$ if the univariate polynomial $t \mapsto p(xtd)$
has all real roots for all vectors $x$. Motivated by partial
differential equations, G{\aa}rding proved in 1951 that the largest
such root is a convex function of $x$, and showed various ways of
constructing new hyperbolic polynomials. We present a powerful new
such construction, and use it to generalize G{\aa}rding's result to
arbitrary symmetric functions of the roots. Many classical and recent
inequalities follow easily. We develop various convexanalytic tools
for such symmetric functions, of interest in interiorpoint methods
for optimization problems over related cones.
Keywords:convex analysis, eigenvalue, G{\aa}rding's inequality, hyperbolic barrier function, hyperbolic polynomial, hyperbolicity cone, interiorpoint method, semidefinite program, singular value, symmetric function Categories:90C25, 15A45, 52A41 
