CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword dynamical systems

  Expand all        Collapse all Results 1 - 7 of 7

1. CJM Online first

Lin, Huaxin
Minimal Dynamical Systems on Connected Odd Dimensional Spaces
Let $\beta\colon S^{2n+1}\to S^{2n+1}$ be a minimal homeomorphism ($n\ge 1$). We show that the crossed product $C(S^{2n+1})\rtimes_\beta \mathbb{Z}$ has rational tracial rank at most one. Let $\Omega$ be a connected compact metric space with finite covering dimension and with $H^1(\Omega, \mathbb{Z})=\{0\}.$ Suppose that $K_i(C(\Omega))=\mathbb{Z}\oplus G_i,$ where $G_i$ is a finite abelian group, $i=0,1.$ Let $\beta\colon \Omega\to\Omega$ be a minimal homeomorphism. We also show that $A=C(\Omega)\rtimes_\beta\mathbb{Z}$ has rational tracial rank at most one and is classifiable. In particular, this applies to the minimal dynamical systems on odd dimensional real projective spaces. This is done by studying minimal homeomorphisms on $X\times \Omega,$ where $X$ is the Cantor set.

Keywords:minimal dynamical systems
Categories:46L35, 46L05

2. CJM Online first

Graham, Robert; Pichot, Mikael
A Free Product Formula for the Sofic Dimension
It is proved that if $G=G_1*_{G_3}G_2$ is free product of probability measure preserving $s$-regular ergodic discrete groupoids amalgamated over an amenable subgroupoid $G_3$, then the sofic dimension $s(G)$ satisfies the equality \[ s(G)=\mathfrak{h}(G_1^0)s(G_1)+\mathfrak{h}(G_2^0)s(G_2)-\mathfrak{h}(G_3^0)s(G_3) \] where $\mathfrak{h}$ is the normalized Haar measure on $G$.

Keywords:sofic groups, dynamical systems, orbit equivalence, free entropy
Category:20E06

3. CJM Online first

Ducrot, Arnaud; Magal, Pierre; Seydi, Ousmane
A Finite-time Condition for Exponential Trichotomy in Infinite Dynamical Systems
In this article we study exponential trichotomy for infinite dimensional discrete time dynamical systems. The goal of this article is to prove that finite time exponential trichotomy conditions allow to derive exponential trichotomy for any times. We present an application to the case of pseudo orbits in some neighborhood of a normally hyperbolic set.

Keywords:exponential trichotomy, exponential dichotomy, discrete time dynamical systems, difference equations
Categories:34D09, 34A10

4. CJM 2013 (vol 65 pp. 1384)

Wright, Paul
Estimates of Hausdorff Dimension for Non-wandering Sets of Higher Dimensional Open Billiards
This article concerns a class of open billiards consisting of a finite number of strictly convex, non-eclipsing obstacles $K$. The non-wandering set $M_0$ of the billiard ball map is a topological Cantor set and its Hausdorff dimension has been previously estimated for billiards in $\mathbb{R}^2$, using well-known techniques. We extend these estimates to billiards in $\mathbb{R}^n$, and make various refinements to the estimates. These refinements also allow improvements to other results. We also show that in many cases, the non-wandering set is confined to a particular subset of $\mathbb{R}^n$ formed by the convex hull of points determined by period 2 orbits. This allows more accurate bounds on the constants used in estimating Hausdorff dimension.

Keywords:dynamical systems, billiards, dimension, Hausdorff
Categories:37D20, 37D40

5. CJM 2012 (vol 65 pp. 349)

Müller, Peter; Richard, Christoph
Ergodic Properties of Randomly Coloured Point Sets
We provide a framework for studying randomly coloured point sets in a locally compact, second-countable space on which a metrisable unimodular group acts continuously and properly. We first construct and describe an appropriate dynamical system for uniformly discrete uncoloured point sets. For point sets of finite local complexity, we characterise ergodicity geometrically in terms of pattern frequencies. The general framework allows to incorporate a random colouring of the point sets. We derive an ergodic theorem for randomly coloured point sets with finite-range dependencies. Special attention is paid to the exclusion of exceptional instances for uniquely ergodic systems. The setup allows for a straightforward application to randomly coloured graphs.

Keywords:Delone sets, dynamical systems
Categories:37B50, 37A30

6. CJM 2011 (vol 65 pp. 149)

Kellendonk, Johannes; Lenz, Daniel
Equicontinuous Delone Dynamical Systems
We characterize equicontinuous Delone dynamical systems as those coming from Delone sets with strongly almost periodic Dirac combs. Within the class of systems with finite local complexity, the only equicontinuous systems are then shown to be the crystallographic ones. On the other hand, within the class without finite local complexity, we exhibit examples of equicontinuous minimal Delone dynamical systems that are not crystallographic. Our results solve the problem posed by Lagarias as to whether a Delone set whose Dirac comb is strongly almost periodic must be crystallographic.

Keywords:Delone sets, tilings, diffraction, topological dynamical systems, almost periodic systems
Category:37B50

7. CJM 2003 (vol 55 pp. 3)

Baake, Michael; Baake, Ellen
An Exactly Solved Model for Mutation, Recombination and Selection
It is well known that rather general mutation-recombination models can be solved algorithmically (though not in closed form) by means of Haldane linearization. The price to be paid is that one has to work with a multiple tensor product of the state space one started from. Here, we present a relevant subclass of such models, in continuous time, with independent mutation events at the sites, and crossover events between them. It admits a closed solution of the corresponding differential equation on the basis of the original state space, and also closed expressions for the linkage disequilibria, derived by means of M\"obius inversion. As an extra benefit, the approach can be extended to a model with selection of additive type across sites. We also derive a necessary and sufficient criterion for the mean fitness to be a Lyapunov function and determine the asymptotic behaviour of the solutions.

Keywords:population genetics, recombination, nonlinear $\ODE$s, measure-valued dynamical systems, Möbius inversion
Categories:92D10, 34L30, 37N30, 06A07, 60J25

© Canadian Mathematical Society, 2014 : https://cms.math.ca/