Expand all Collapse all | Results 1 - 6 of 6 |
1. CJM Online first
Bounded Derived Categories of Infinite Quivers: Grothendieck Duality, Reflection Functor We study bounded derived categories of the category of representations of infinite quivers over a ring $R$. In case $R$ is a commutative noetherian ring with a dualising complex, we investigate an equivalence similar to Grothendieck duality for these categories, while a notion of dualising complex does not apply to them. The quivers we consider are left, resp. right, rooted quivers that are either noetherian or their opposite are noetherian. We also consider reflection functor and generalize a result of Happel to noetherian rings of finite global dimension, instead of fields.
Keywords:derived category, Grothendieck duality, representation of quivers, reflection functor Categories:18E30, 16G20, 18E40, 16D90, 18A40 |
2. CJM 2013 (vol 66 pp. 1382)
Weighted Carleson Measure Spaces Associated with Different Homogeneities In this paper, we introduce weighted Carleson measure spaces associated
with different homogeneities and prove that these spaces are the dual spaces
of weighted Hardy spaces studied in a forthcoming paper.
As an application, we establish
the boundedness of composition of two CalderÃ³n-Zygmund operators with
different homogeneities on the weighted Carleson measure spaces; this,
in particular, provides the weighted endpoint estimates for the operators
studied by Phong-Stein.
Keywords:composition of operators, weighted Carleson measure spaces, duality Categories:42B20, 42B35 |
3. CJM 2009 (vol 61 pp. 1300)
Monodromy Groups and Self-Invariance For every polytope $\mathcal{P}$ there is the universal regular
polytope of the same rank as $\mathcal{P}$ corresponding to the
Coxeter group $\mathcal{C} =[\infty, \dots, \infty]$. For a given
automorphism $d$ of $\mathcal{C}$, using monodromy groups, we
construct a combinatorial structure $\mathcal{P}^d$. When
$\mathcal{P}^d$ is a polytope isomorphic to $\mathcal{P}$ we say that
$\mathcal{P}$ is self-invariant with respect to $d$, or
$d$-invariant. We develop algebraic tools for investigating these
operations on polytopes, and in particular give a criterion on the
existence of a $d$\nobreakdash-auto\-morphism of a given order. As an application,
we analyze properties of self-dual edge-transitive polyhedra and
polyhedra with two flag-orbits. We investigate properties of medials
of such polyhedra. Furthermore, we give an example of a self-dual
equivelar polyhedron which contains no polarity (duality of order
2). We also extend the concept of Petrie dual to higher dimensions,
and we show how it can be dealt with using self-invariance.
Keywords:maps, abstract polytopes, self-duality, monodromy groups, medials of polyhedra Categories:51M20, 05C25, 05C10, 05C30, 52B70 |
4. CJM 2005 (vol 57 pp. 204)
On the Duality between Coalescing Brownian Motions A duality formula is found for coalescing Brownian motions on the
real line. It is shown that the joint distribution of a coalescing
Brownian motion can be determined by another coalescing Brownian
motion running backward. This duality is used to study a
measure-valued process arising as the high density limit of the
empirical measures of coalescing Brownian motions.
Keywords:coalescing Brownian motions, duality, martingale problem,, measure-valued processes Categories:60J65, 60G57 |
5. CJM 1999 (vol 51 pp. 372)
Uniqueness for a Competing Species Model We show that a martingale problem associated with a competing
species model has a unique solution. The proof of uniqueness of the
solution for the martingale problem is based on duality
technique. It requires the construction of dual probability
measures.
Keywords:stochastic partial differential equation, Martingale problem, duality Categories:60H15, 35R60 |
6. CJM 1999 (vol 51 pp. 3)
On a Conjecture of Goresky, Kottwitz and MacPherson We settle a conjecture of Goresky, Kottwitz and MacPherson related
to Koszul duality, \ie, to the correspondence between differential
graded modules over the exterior algebra and those over the
symmetric algebra.
Keywords:Koszul duality, Hirsch-Brown model Categories:13D25, 18E30, 18G35, 55U15 |