CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword determinant

  Expand all        Collapse all Results 1 - 4 of 4

1. CJM 2012 (vol 65 pp. 655)

Shemyakova, E.
Proof of the Completeness of Darboux Wronskian Formulae for Order Two
Darboux Wronskian formulas allow to construct Darboux transformations, but Laplace transformations, which are Darboux transformations of order one cannot be represented this way. It has been a long standing problem on what are other exceptions. In our previous work we proved that among transformations of total order one there are no other exceptions. Here we prove that for transformations of total order two there are no exceptions at all. We also obtain a simple explicit invariant description of all possible Darboux Transformations of total order two.

Keywords:completeness of Darboux Wronskian formulas, completeness of Darboux determinants, Darboux transformations, invariants for solution of PDEs
Categories:53Z05, 35Q99

2. CJM 2010 (vol 63 pp. 413)

Konvalinka, Matjaž; Skandera, Mark
Generating Functions for Hecke Algebra Characters
Certain polynomials in $n^2$ variables that serve as generating functions for symmetric group characters are sometimes called ($S_n$) character immanants. We point out a close connection between the identities of Littlewood--Merris--Watkins and Goulden--Jackson, which relate $S_n$ character immanants to the determinant, the permanent and MacMahon's Master Theorem. From these results we obtain a generalization of Muir's identity. Working with the quantum polynomial ring and the Hecke algebra $H_n(q)$, we define quantum immanants that are generating functions for Hecke algebra characters. We then prove quantum analogs of the Littlewood--Merris--Watkins identities and selected Goulden--Jackson identities that relate $H_n(q)$ character immanants to the quantum determinant, quantum permanent, and quantum Master Theorem of Garoufalidis--L\^e--Zeilberger. We also obtain a generalization of Zhang's quantization of Muir's identity.

Keywords:determinant, permanent, immanant, Hecke algebra character, quantum polynomial ring
Categories:15A15, 20C08, 81R50

3. CJM 2009 (vol 62 pp. 133)

Makarov, Konstantin A.; Skripka, Anna
Some Applications of the Perturbation Determinant in Finite von Neumann Algebras
In the finite von Neumann algebra setting, we introduce the concept of a perturbation determinant associated with a pair of self-adjoint elements $H_0$ and $H$ in the algebra and relate it to the concept of the de la Harpe--Skandalis homotopy invariant determinant associated with piecewise $C^1$-paths of operators joining $H_0$ and $H$. We obtain an analog of Krein's formula that relates the perturbation determinant and the spectral shift function and, based on this relation, we derive subsequently (i) the Birman--Solomyak formula for a general non-linear perturbation, (ii) a universality of a spectral averaging, and (iii) a generalization of the Dixmier--Fuglede--Kadison differentiation formula.

Keywords:perturbation determinant, trace formulae, von Neumann algebras
Categories:47A55, 47C15, 47A53

4. CJM 2000 (vol 52 pp. 695)

Carey, A.; Farber, M.; Mathai, V.
Correspondences, von Neumann Algebras and Holomorphic $L^2$ Torsion
Given a holomorphic Hilbertian bundle on a compact complex manifold, we introduce the notion of holomorphic $L^2$ torsion, which lies in the determinant line of the twisted $L^2$ Dolbeault cohomology and represents a volume element there. Here we utilise the theory of determinant lines of Hilbertian modules over finite von~Neumann algebras as developed in \cite{CFM}. This specialises to the Ray-Singer-Quillen holomorphic torsion in the finite dimensional case. We compute a metric variation formula for the holomorphic $L^2$ torsion, which shows that it is {\it not\/} in general independent of the choice of Hermitian metrics on the complex manifold and on the holomorphic Hilbertian bundle, which are needed to define it. We therefore initiate the theory of correspondences of determinant lines, that enables us to define a relative holomorphic $L^2$ torsion for a pair of flat Hilbertian bundles, which we prove is independent of the choice of Hermitian metrics on the complex manifold and on the flat Hilbertian bundles.

Keywords:holomorphic $L^2$ torsion, correspondences, local index theorem, almost Kähler manifolds, von~Neumann algebras, determinant lines
Categories:58J52, 58J35, 58J20

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/