Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword decomposition

  Expand all        Collapse all Results 1 - 7 of 7

1. CJM Online first

Almeida, Víctor; Betancor, Jorge J.; Rodríguez-Mesa, Lourdes
Anisotropic Hardy-Lorentz spaces with variable exponents
In this paper we introduce Hardy-Lorentz spaces with variable exponents associated to dilations in ${\mathbb R}^n$. We establish maximal characterizations and atomic decompositions for our variable exponent anisotropic Hardy-Lorentz spaces.

Keywords:variable exponent Hardy space, Hardy-Lorentz space, anisotropic Hardy space, maximal function, atomic decomposition
Categories:42B30, 42B25, 42B35

2. CJM 2009 (vol 62 pp. 182)

Prajs, Janusz R.
Mutually Aposyndetic Decomposition of Homogeneous Continua
A new decomposition, the \emph{mutually aposyndetic decomposition} of homogeneous continua into closed, homogeneous sets is introduced. This decomposition is respected by homeomorphisms and topologically unique. Its quotient is a mutually aposyndetic homogeneous continuum, and in all known examples, as well as in some general cases, the members of the decomposition are semi-indecomposable continua. As applications, we show that hereditarily decomposable homogeneous continua and path connected homogeneous continua are mutually aposyndetic. A class of new examples of homogeneous continua is defined. The mutually aposyndetic decomposition of each of these continua is non-trivial and different from Jones' aposyndetic decomposition.

Keywords:ample, aposyndetic, continuum, decomposition, filament, homogeneous
Categories:54F15, 54B15

3. CJM 2009 (vol 62 pp. 305)

Hua, He; Yunbai, Dong; Xianzhou, Guo
Approximation and Similarity Classification of Stably Finitely Strongly Irreducible Decomposable Operators
Let $\mathcal H$ be a complex separable Hilbert space and ${\mathcal L}({\mathcal H})$ denote the collection of bounded linear operators on ${\mathcal H}$. In this paper, we show that for any operator $A\in{\mathcal L}({\mathcal H})$, there exists a stably finitely (SI) decomposable operator $A_\epsilon$, such that $\|A-A_{\epsilon}\|<\epsilon$ and ${\mathcal{\mathcal A}'(A_{\epsilon})}/\operatorname{rad} {{\mathcal A}'(A_{\epsilon})}$ is commutative, where $\operatorname{rad}{{\mathcal A}'(A_{\epsilon})}$ is the Jacobson radical of ${{\mathcal A}'(A_{\epsilon})}$. Moreover, we give a similarity classification of the stably finitely decomposable operators that generalizes the result on similarity classification of Cowen-Douglas operators given by C. L. Jiang.

Keywords:$K_{0}$-group, strongly irreducible decomposition, Cowen—Douglas operators, commutant algebra, similarity classification
Categories:47A05, 47A55, 46H20

4. CJM 2006 (vol 58 pp. 877)

Selick, P.; Theriault, S.; Wu, J.
Functorial Decompositions of Looped Coassociative Co-$H$ Spaces
Selick and Wu gave a functorial decomposition of $\Omega\Sigma X$ for path-connected, $p$-local \linebreak$\CW$\nbd-com\-plexes $X$ which obtained the smallest nontrivial functorial retract $A^{\min}(X)$ of $\Omega\Sigma X$. This paper uses methods developed by the second author in order to extend such functorial decompositions to the loops on coassociative co-$H$ spaces.

Keywords:homotopy decomposition, coassociative co-$H$ spaces

5. CJM 2003 (vol 55 pp. 1000)

Graczyk, P.; Sawyer, P.
Some Convexity Results for the Cartan Decomposition
In this paper, we consider the set $\mathcal{S} = a(e^X K e^Y)$ where $a(g)$ is the abelian part in the Cartan decomposition of $g$. This is exactly the support of the measure intervening in the product formula for the spherical functions on symmetric spaces of noncompact type. We give a simple description of that support in the case of $\SL(3,\mathbf{F})$ where $\mathbf{F} = \mathbf{R}$, $\mathbf{C}$ or $\mathbf{H}$. In particular, we show that $\mathcal{S}$ is convex. We also give an application of our result to the description of singular values of a product of two arbitrary matrices with prescribed singular values.

Keywords:convexity theorems, Cartan decomposition, spherical functions, product formula, semisimple Lie groups, singular values
Categories:43A90, 53C35, 15A18

6. CJM 1999 (vol 51 pp. 850)

Muhly, Paul S.; Solel, Baruch
Tensor Algebras, Induced Representations, and the Wold Decomposition
Our objective in this sequel to \cite{MSp96a} is to develop extensions, to representations of tensor algebras over $C^{*}$-correspondences, of two fundamental facts about isometries on Hilbert space: The Wold decomposition theorem and Beurling's theorem, and to apply these to the analysis of the invariant subspace structure of certain subalgebras of Cuntz-Krieger algebras.

Keywords:tensor algebras, correspondence, induced representation, Wold decomposition, Beurling's theorem
Categories:46L05, 46L40, 46L89, 47D15, 47D25, 46M10, 46M99, 47A20, 47A45, 47B35

7. CJM 1998 (vol 50 pp. 525)

Brockman, William; Haiman, Mark
Nilpotent orbit varieties and the atomic decomposition of the $q$-Kostka polynomials
We study the coordinate rings~$k[\Cmubar\cap\hbox{\Frakvii t}]$ of scheme-theoretic intersections of nilpotent orbit closures with the diagonal matrices. Here $\mu'$ gives the Jordan block structure of the nilpotent matrix. de Concini and Procesi~\cite{deConcini&Procesi} proved a conjecture of Kraft~\cite{Kraft} that these rings are isomorphic to the cohomology rings of the varieties constructed by Springer~\cite{Springer76,Springer78}. The famous $q$-Kostka polynomial~$\Klmt(q)$ is the Hilbert series for the multiplicity of the irreducible symmetric group representation indexed by~$\lambda$ in the ring $k[\Cmubar\cap\hbox{\Frakvii t}]$. \LS~\cite{L&S:Plaxique,Lascoux} gave combinatorially a decomposition of~$\Klmt(q)$ as a sum of ``atomic'' polynomials with non-negative integer coefficients, and Lascoux proposed a corresponding decomposition in the cohomology model. Our work provides a geometric interpretation of the atomic decomposition. The Frobenius-splitting results of Mehta and van der Kallen~\cite{Mehta&vanderKallen} imply a direct-sum decomposition of the ideals of nilpotent orbit closures, arising from the inclusions of the corresponding sets. We carry out the restriction to the diagonal using a recent theorem of Broer~\cite{Broer}. This gives a direct-sum decomposition of the ideals yielding the $k[\Cmubar\cap \hbox{\Frakvii t}]$, and a new proof of the atomic decomposition of the $q$-Kostka polynomials.

Keywords:$q$-Kostka polynomials, atomic decomposition, nilpotent conjugacy classes, nilpotent orbit varieties
Categories:05E10, 14M99, 20G05, 05E15

© Canadian Mathematical Society, 2017 :