1. CJM Online first
2. CJM 2009 (vol 62 pp. 182)
 Prajs, Janusz R.

Mutually Aposyndetic Decomposition of Homogeneous Continua
A new decomposition, the \emph{mutually aposyndetic decomposition} of
homogeneous continua into closed, homogeneous sets is introduced. This
decomposition is respected by homeomorphisms and topologically
unique. Its quotient is a mutually aposyndetic homogeneous continuum,
and in all known examples, as well as in some general cases, the
members of the decomposition are semiindecomposable continua. As
applications, we show that hereditarily decomposable homogeneous
continua and path connected homogeneous continua are mutually
aposyndetic. A class of new examples of homogeneous continua is
defined. The mutually aposyndetic decomposition of each of these
continua is nontrivial and different from Jones' aposyndetic
decomposition.
Keywords:ample, aposyndetic, continuum, decomposition, filament, homogeneous Categories:54F15, 54B15 

3. CJM 2009 (vol 62 pp. 305)
 Hua, He; Yunbai, Dong; Xianzhou, Guo

Approximation and Similarity Classification of Stably Finitely Strongly Irreducible Decomposable Operators
Let $\mathcal H$ be a complex separable Hilbert space and ${\mathcal L}({\mathcal H})$ denote the collection of bounded linear operators on ${\mathcal H}$. In this paper, we show that for any operator $A\in{\mathcal L}({\mathcal H})$, there exists a stably finitely (SI) decomposable operator $A_\epsilon$, such that $\AA_{\epsilon}\<\epsilon$ and ${\mathcal{\mathcal A}'(A_{\epsilon})}/\operatorname{rad} {{\mathcal A}'(A_{\epsilon})}$ is commutative, where $\operatorname{rad}{{\mathcal A}'(A_{\epsilon})}$ is the Jacobson radical of ${{\mathcal A}'(A_{\epsilon})}$. Moreover, we give a similarity classification of the stably finitely decomposable operators that generalizes the result on similarity classification of CowenDouglas operators given by C. L. Jiang.
Keywords:$K_{0}$group, strongly irreducible decomposition, CowenâDouglas operators, commutant algebra, similarity classification Categories:47A05, 47A55, 46H20 

4. CJM 2006 (vol 58 pp. 877)
 Selick, P.; Theriault, S.; Wu, J.

Functorial Decompositions of Looped Coassociative Co$H$ Spaces
Selick and Wu gave a functorial decomposition of
$\Omega\Sigma X$ for pathconnected, $p$local \linebreak$\CW$\nbdcom\plexes $X$
which obtained the smallest nontrivial functorial retract $A^{\min}(X)$
of $\Omega\Sigma X$. This paper uses methods developed by
the second author in order to extend such functorial
decompositions to the loops on coassociative co$H$ spaces.
Keywords:homotopy decomposition, coassociative co$H$ spaces Category:55P53 

5. CJM 2003 (vol 55 pp. 1000)
 Graczyk, P.; Sawyer, P.

Some Convexity Results for the Cartan Decomposition
In this paper, we consider the set $\mathcal{S} = a(e^X K e^Y)$
where $a(g)$ is the abelian part in the Cartan decomposition of
$g$. This is exactly the support of the measure intervening in the
product formula for the spherical functions on symmetric spaces of
noncompact type. We give a simple description of that support in
the case of $\SL(3,\mathbf{F})$ where $\mathbf{F} = \mathbf{R}$,
$\mathbf{C}$ or $\mathbf{H}$. In particular, we show that
$\mathcal{S}$ is convex.
We also give an application of our result to the description of
singular values of a product of two arbitrary matrices with
prescribed singular values.
Keywords:convexity theorems, Cartan decomposition, spherical functions, product formula, semisimple Lie groups, singular values Categories:43A90, 53C35, 15A18 

6. CJM 1999 (vol 51 pp. 850)
 Muhly, Paul S.; Solel, Baruch

Tensor Algebras, Induced Representations, and the Wold Decomposition
Our objective in this sequel to \cite{MSp96a} is to develop extensions,
to representations of tensor algebras over $C^{*}$correspondences, of
two fundamental facts about isometries on Hilbert space: The Wold
decomposition theorem and Beurling's theorem, and to apply these to
the analysis of the invariant subspace structure of certain subalgebras
of CuntzKrieger algebras.
Keywords:tensor algebras, correspondence, induced representation, Wold decomposition, Beurling's theorem Categories:46L05, 46L40, 46L89, 47D15, 47D25, 46M10, 46M99, 47A20, 47A45, 47B35 

7. CJM 1998 (vol 50 pp. 525)
 Brockman, William; Haiman, Mark

Nilpotent orbit varieties and the atomic decomposition of the $q$Kostka polynomials
We study the coordinate rings~$k[\Cmubar\cap\hbox{\Frakvii t}]$ of
schemetheoretic
intersections of nilpotent orbit closures with the diagonal matrices.
Here $\mu'$ gives the Jordan block structure of the nilpotent matrix.
de Concini and Procesi~\cite{deConcini&Procesi} proved a conjecture of
Kraft~\cite{Kraft} that these rings are isomorphic to the cohomology
rings of the varieties constructed by
Springer~\cite{Springer76,Springer78}. The famous $q$Kostka
polynomial~$\Klmt(q)$ is the Hilbert series for the
multiplicity of the irreducible symmetric group representation indexed
by~$\lambda$ in the ring $k[\Cmubar\cap\hbox{\Frakvii t}]$.
\LS~\cite{L&S:Plaxique,Lascoux} gave combinatorially a decomposition
of~$\Klmt(q)$ as a sum of ``atomic'' polynomials with
nonnegative integer coefficients, and Lascoux proposed a
corresponding decomposition in the cohomology model.
Our work provides a geometric interpretation of the atomic
decomposition. The Frobeniussplitting results of Mehta and van der
Kallen~\cite{Mehta&vanderKallen} imply a directsum decomposition of
the ideals of nilpotent orbit closures, arising from the inclusions of
the corresponding sets. We carry out the restriction to the diagonal
using a recent theorem of Broer~\cite{Broer}. This gives a directsum
decomposition of the ideals yielding the $k[\Cmubar\cap
\hbox{\Frakvii t}]$, and a new proof of the atomic decomposition of
the $q$Kostka polynomials.
Keywords:$q$Kostka polynomials, atomic decomposition, nilpotent conjugacy classes, nilpotent orbit varieties Categories:05E10, 14M99, 20G05, 05E15 
