Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword crossed product

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2012 (vol 65 pp. 768)

Fuller, Adam Hanley
Nonself-adjoint Semicrossed Products by Abelian Semigroups
Let $\mathcal{S}$ be the semigroup $\mathcal{S}=\sum^{\oplus k}_{i=1}\mathcal{S}_i$, where for each $i\in I$, $\mathcal{S}_i$ is a countable subsemigroup of the additive semigroup $\mathbb{R}_+$ containing $0$. We consider representations of $\mathcal{S}$ as contractions $\{T_s\}_{s\in\mathcal{S}}$ on a Hilbert space with the Nica-covariance property: $T_s^*T_t=T_tT_s^*$ whenever $t\wedge s=0$. We show that all such representations have a unique minimal isometric Nica-covariant dilation. This result is used to help analyse the nonself-adjoint semicrossed product algebras formed from Nica-covariant representations of the action of $\mathcal{S}$ on an operator algebra $\mathcal{A}$ by completely contractive endomorphisms. We conclude by calculating the $C^*$-envelope of the isometric nonself-adjoint semicrossed product algebra (in the sense of Kakariadis and Katsoulis).

Keywords:semicrossed product, crossed product, C*-envelope, dilations
Categories:47L55, 47A20, 47L65

2. CJM 2011 (vol 64 pp. 705)

Thomsen, Klaus
Pure Infiniteness of the Crossed Product of an AH-Algebra by an Endomorphism
It is shown that simplicity of the crossed product of a unital AH-algebra with slow dimension growth by an endomorphism implies that the algebra is also purely infinite, provided only that the endomorphism leaves no trace state invariant and takes the unit to a full projection.

Keywords:purely infinite $C^*$-algebras, crossed products

© Canadian Mathematical Society, 2014 :