CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword corps local

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2006 (vol 58 pp. 1229)

Henniart, Guy; Lemaire, Bertrand
Intégrales orbitales tordues sur $\GL(n,F)$ et corps locaux proches\,: applications
Soient $F$ un corps commutatif localement compact non archim\'edien, $G=\GL (n,F)$ pour un entier $n\geq 2$, et $\kappa$ un caract\`ere de $F^\times$ trivial sur $(F^\times)^n$. On prouve une formule pour les $\kappa$-int\'egrales orbitales r\'eguli\`eres sur $G$ permettant, si $F$ est de caract\'eristique $>0$, de les relever \`a la caract\'eristique nulle. On en d\'eduit deux r\'esultats nouveaux en caract\'eristique $>0$\,: le ``lemme fondamental'' pour l'induction automorphe, et une version simple de la formule des traces tordue locale d'Arthur reliant $\kappa$-int\'egrales orbitales elliptiques et caract\`eres $\kappa$-tordus. Cette formule donne en particulier, pour une s\'erie $\kappa$-discr\`ete de $G$, les $\kappa$-int\'egrales orbitales elliptiques d'un pseudo-coefficient comme valeurs du caract\`ere $\kappa$-tordu.

Keywords:corps local, représentation lisse, intégrale orbitale tordue, induction automorphe, lemme fondamental, formule des traces locale, pseudo-coefficient
Category:22E50

2. CJM 2001 (vol 53 pp. 1141)

Bushnell, Colin J.; Henniart, Guy
Sur le comportement, par torsion, des facteurs epsilon de paires
Soient $F$ un corps commutatif localement compact non archim\'edien et $\psi$ un caract\`ere additif non trivial de $F$. Soient $n$ et $n'$ deux entiers distincts, sup\'erieurs \`a $1$. Soient $\pi$ et $\pi'$ des repr\'esentations irr\'eductibles supercuspidales de $\GL_n(F)$, $\GL_{n'}(F)$ respectivement. Nous prouvons qu'il existe un \'el\'ement $c= c(\pi,\pi',\psi)$ de $F^\times$ tel que pour tout quasicaract\`ere mod\'er\'e $\chi$ de $F^\times$ on ait $\varepsilon(\chi\pi\times \pi',s,\psi) = \chi(c)^{-1}\varepsilon(\pi\times\pi',s,\psi)$. Nous examinons aussi certains cas o\`u $n=n'$, $\pi'=\pi^\vee$. Les r\'esultats obtenus forment une \'etape vers une d\'emonstration de la conjecture de Langlands pour $F$, qui ne fasse pas appel \`a la g\'eom\'etrie des vari\'et\'es modulaires, de Shimura ou de Drinfeld. Let $F$ be a non-Archimedean local field, and $\psi$ a non-trivial additive character of $F$. Let $n$ and $n'$ be distinct positive integers. Let $\pi$, $\pi'$ be irreducible supercuspidal representations of $\GL_n(F)$, $\GL_{n'}(F)$ respectively. We prove that there is $c= c(\pi,\pi',\psi)\in F^\times$ such that for every tame quasicharacter $\chi$ of $F^\times$ we have $\varepsilon(\chi\pi\times \pi',s,\psi) = \chi(c)^{-1}\varepsilon(\pi\times\pi',s,\psi)$. We also treat some cases where $n=n'$ and $\pi'=\pi^\vee$. These results are steps towards a proof of the Langlands conjecture for $F$, which would not use the geometry of modular---Shimura or Drinfeld---varieties.

Keywords:corps local, correspondance de Langlands locale, facteurs epsilon de paires
Category:22E50

© Canadian Mathematical Society, 2014 : https://cms.math.ca/