CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword convolution

  Expand all        Collapse all Results 1 - 10 of 10

1. CJM Online first

Ghaani Farashahi, Arash
A Class of Abstract Linear Representations for Convolution Function Algebras over Homogeneous Spaces of Compact Groups
This paper introduces a class of abstract linear representations on Banach convolution function algebras over homogeneous spaces of compact groups. Let $G$ be a compact group and $H$ be a closed subgroup of $G$. Let $\mu$ be the normalized $G$-invariant measure over the compact homogeneous space $G/H$ associated to the Weil's formula and $1\le p\lt \infty$. We then present a structured class of abstract linear representations of the Banach convolution function algebras $L^p(G/H,\mu)$.

Keywords:homogeneous space, linear representation, continuous unitary representation, convolution function algebra, compact group, convolution, involution
Categories:43A85, 47A67, 20G05

2. CJM Online first

Lee, Hun Hee; Youn, Sang-gyun
New deformations of convolution algebras and Fourier algebras on locally compact groups
In this paper we introduce a new way of deforming convolution algebras and Fourier algebras on locally compact groups. We demonstrate that this new deformation allows us to reveal some information of the underlying groups by examining Banach algebra properties of deformed algebras. More precisely, we focus on representability as an operator algebra of deformed convolution algebras on compact connected Lie groups with connection to the real dimension of the underlying group. Similarly, we investigate complete representability as an operator algebra of deformed Fourier algebras on some finitely generated discrete groups with connection to the growth rate of the group.

Keywords:Fourier algebra, convolution algebra, operator algebra, Beurling algebra
Categories:43A20, 43A30, 47L30, 47L25

3. CJM Online first

Chen, Xianghong; Seeger, Andreas
Convolution powers of Salem measures with applications
We study the regularity of convolution powers for measures supported on Salem sets, and prove related results on Fourier restriction and Fourier multipliers. In particular we show that for $\alpha$ of the form ${d}/{n}$, $n=2,3,\dots$ there exist $\alpha$-Salem measures for which the $L^2$ Fourier restriction theorem holds in the range $p\le \frac{2d}{2d-\alpha}$. The results rely on ideas of Körner. We extend some of his constructions to obtain upper regular $\alpha$-Salem measures, with sharp regularity results for $n$-fold convolutions for all $n\in \mathbb{N}$.

Keywords:convolution powers, Fourier restriction, Salem sets, Salem measures, random sparse sets, Fourier multipliers of Bochner-Riesz type
Categories:42A85, 42B99, 42B15, 42A61

4. CJM 2016 (vol 68 pp. 280)

da Silva, Genival; Kerr, Matt; Pearlstein, Gregory
Arithmetic of Degenerating Principal Variations of Hodge Structure: Examples Arising from Mirror Symmetry and Middle Convolution
We collect evidence in support of a conjecture of Griffiths, Green and Kerr on the arithmetic of extension classes of limiting mixed Hodge structures arising from semistable degenerations over a number field. After briefly summarizing how a result of Iritani implies this conjecture for a collection of hypergeometric Calabi-Yau threefold examples studied by Doran and Morgan, the authors investigate a sequence of (non-hypergeometric) examples in dimensions $1\leq d\leq6$ arising from Katz's theory of the middle convolution. A crucial role is played by the Mumford-Tate group (which is $G_{2}$) of the family of 6-folds, and the theory of boundary components of Mumford-Tate domains.

Keywords:variation of Hodge structure, limiting mixed Hodge structure, Calabi-Yau variety, middle convolution, Mumford-Tate group
Categories:14D07, 14M17, 17B45, 20G99, 32M10, 32G20

5. CJM 2012 (vol 66 pp. 102)

Birth, Lidia; Glöckner, Helge
Continuity of convolution of test functions on Lie groups
For a Lie group $G$, we show that the map $C^\infty_c(G)\times C^\infty_c(G)\to C^\infty_c(G)$, $(\gamma,\eta)\mapsto \gamma*\eta$ taking a pair of test functions to their convolution is continuous if and only if $G$ is $\sigma$-compact. More generally, consider $r,s,t \in \mathbb{N}_0\cup\{\infty\}$ with $t\leq r+s$, locally convex spaces $E_1$, $E_2$ and a continuous bilinear map $b\colon E_1\times E_2\to F$ to a complete locally convex space $F$. Let $\beta\colon C^r_c(G,E_1)\times C^s_c(G,E_2)\to C^t_c(G,F)$, $(\gamma,\eta)\mapsto \gamma *_b\eta$ be the associated convolution map. The main result is a characterization of those $(G,r,s,t,b)$ for which $\beta$ is continuous. Convolution of compactly supported continuous functions on a locally compact group is also discussed, as well as convolution of compactly supported $L^1$-functions and convolution of compactly supported Radon measures.

Keywords:Lie group, locally compact group, smooth function, compact support, test function, second countability, countable basis, sigma-compactness, convolution, continuity, seminorm, product estimates
Categories:22E30, 46F05, 22D15, 42A85, 43A10, 43A15, 46A03, 46A13, 46E25

6. CJM 2011 (vol 64 pp. 1075)

Raja, Chandiraraj Robinson Edward
A Stochastic Difference Equation with Stationary Noise on Groups
We consider the stochastic difference equation $$\eta _k = \xi _k \phi (\eta _{k-1}), \quad k \in \mathbb Z $$ on a locally compact group $G$ where $\phi$ is an automorphism of $G$, $\xi _k$ are given $G$-valued random variables and $\eta _k$ are unknown $G$-valued random variables. This equation was considered by Tsirelson and Yor on one-dimensional torus. We consider the case when $\xi _k$ have a common law $\mu$ and prove that if $G$ is a distal group and $\phi$ is a distal automorphism of $G$ and if the equation has a solution, then extremal solutions of the equation are in one-one correspondence with points on the coset space $K\backslash G$ for some compact subgroup $K$ of $G$ such that $\mu$ is supported on $Kz= z\phi (K)$ for any $z$ in the support of $\mu$. We also provide a necessary and sufficient condition for the existence of solutions to the equation.

Keywords:dissipating, distal automorphisms, probability measures, pointwise distal groups, shifted convolution powers
Categories:60B15, 60G20

7. CJM 2010 (vol 63 pp. 222)

Wang, Jiun-Chau
Limit Theorems for Additive Conditionally Free Convolution
In this paper we determine the limiting distributional behavior for sums of infinitesimal conditionally free random variables. We show that the weak convergence of classical convolution and that of conditionally free convolution are equivalent for measures in an infinitesimal triangular array, where the measures may have unbounded support. Moreover, we use these limit theorems to study the conditionally free infinite divisibility. These results are obtained by complex analytic methods without reference to the combinatorics of c-free convolution.

Keywords:additive c-free convolution, limit theorems, infinitesimal arrays
Categories:46L53, 60F05

8. CJM 2004 (vol 56 pp. 871)

Schocker, Manfred
Lie Elements and Knuth Relations
A coplactic class in the symmetric group $\Sym_n$ consists of all permutations in $\Sym_n$ with a given Schensted $Q$-symbol, and may be described in terms of local relations introduced by Knuth. Any Lie element in the group algebra of $\Sym_n$ which is constant on coplactic classes is already constant on descent classes. As a consequence, the intersection of the Lie convolution algebra introduced by Patras and Reutenauer and the coplactic algebra introduced by Poirier and Reutenauer is the direct sum of all Solomon descent algebras.

Keywords:symmetric group, descent set, coplactic relation, Hopf algebra,, convolution product
Categories:17B01, 05E10, 20C30, 16W30

9. CJM 2001 (vol 53 pp. 565)

Hare, Kathryn E.; Sato, Enji
Spaces of Lorentz Multipliers
We study when the spaces of Lorentz multipliers from $L^{p,t} \rightarrow L^{p,s}$ are distinct. Our main interest is the case when $s
Keywords:multipliers, convolution operators, Lorentz spaces, Lorentz-improving multipliers
Categories:43A22, 42A45, 46E30

10. CJM 1999 (vol 51 pp. 96)

Rösler, Margit; Voit, Michael
Partial Characters and Signed Quotient Hypergroups
If $G$ is a closed subgroup of a commutative hypergroup $K$, then the coset space $K/G$ carries a quotient hypergroup structure. In this paper, we study related convolution structures on $K/G$ coming from deformations of the quotient hypergroup structure by certain functions on $K$ which we call partial characters with respect to $G$. They are usually not probability-preserving, but lead to so-called signed hypergroups on $K/G$. A first example is provided by the Laguerre convolution on $\left[ 0,\infty \right[$, which is interpreted as a signed quotient hypergroup convolution derived from the Heisenberg group. Moreover, signed hypergroups associated with the Gelfand pair $\bigl( U(n,1), U(n) \bigr)$ are discussed.

Keywords:quotient hypergroups, signed hypergroups, Laguerre convolution, Jacobi functions
Categories:43A62, 33C25, 43A20, 43A90

© Canadian Mathematical Society, 2016 : https://cms.math.ca/