Expand all Collapse all | Results 1 - 4 of 4 |
1. CJM 2013 (vol 67 pp. 3)
On the Local Convexity of Intersection Bodies of Revolution One of the fundamental results in Convex Geometry is Busemann's
theorem, which states that the intersection body of a symmetric convex
body is convex. Thus, it is only natural to ask if there is a
quantitative version of Busemann's theorem, i.e., if the intersection
body operation actually improves convexity. In this paper we
concentrate on the symmetric bodies of revolution to provide several
results on the (strict) improvement of convexity under the
intersection body operation. It is shown that the intersection body of
a symmetric convex body of revolution has the same asymptotic behavior
near the equator as the Euclidean
ball. We apply this result to show that in sufficiently high
dimension the double intersection body of a symmetric convex body of
revolution is very close to an ellipsoid in the Banach-Mazur
distance. We also prove results on the local convexity at the equator
of intersection bodies in the class of star bodies of revolution.
Keywords:convex bodies, intersection bodies of star bodies, Busemann's theorem, local convexity Categories:52A20, 52A38, 44A12 |
2. CJM 2007 (vol 59 pp. 3)
Holomorphic Generation of Continuous Inverse Algebras We study complex commutative Banach algebras
(and, more generally, continuous
inverse algebras) in which the holomorphic functions of a fixed $n$-tuple
of elements are dense. In particular, we characterize the compact subsets
of~$\C^n$ which appear as joint spectra of such $n$-tuples. The
characterization is compared with several established notions of holomorphic
convexity by means of approximation
conditions.
Keywords:holomorphic functional calculus, commutative continuous inverse algebra, holomorphic convexity, Stein compacta, meromorphic convexity, holomorphic approximation Categories:46H30, 32A38, 32E30, 41A20, 46J15 |
3. CJM 2003 (vol 55 pp. 1000)
Some Convexity Results for the Cartan Decomposition In this paper, we consider the set $\mathcal{S} = a(e^X K e^Y)$
where $a(g)$ is the abelian part in the Cartan decomposition of
$g$. This is exactly the support of the measure intervening in the
product formula for the spherical functions on symmetric spaces of
noncompact type. We give a simple description of that support in
the case of $\SL(3,\mathbf{F})$ where $\mathbf{F} = \mathbf{R}$,
$\mathbf{C}$ or $\mathbf{H}$. In particular, we show that
$\mathcal{S}$ is convex.
We also give an application of our result to the description of
singular values of a product of two arbitrary matrices with
prescribed singular values.
Keywords:convexity theorems, Cartan decomposition, spherical functions, product formula, semisimple Lie groups, singular values Categories:43A90, 53C35, 15A18 |
4. CJM 2000 (vol 52 pp. 141)
Numerical Ranges Arising from Simple Lie Algebras A unified formulation is given to various generalizations of the
classical numerical range including the $c$-numerical range,
congruence numerical range, $q$-numerical range and von Neumann
range. Attention is given to those cases having connections with
classical simple real Lie algebras. Convexity and inclusion
relation involving those generalized numerical ranges are
investigated. The underlying geometry is emphasized.
Keywords:numerical range, convexity, inclusion relation Categories:15A60, 17B20 |