Expand all Collapse all | Results 1 - 6 of 6 |
1. CJM Online first
On the rate of convergence of empirical measures in $\infty$-transportation distance We consider random i.i.d. samples of absolutely continuous measures
on bounded connected domains.
We prove an upper bound on the $\infty$-transportation distance
between the measure and the empirical measure of the sample.
The bound is optimal in terms of scaling with the number of sample
points.
Keywords:rate, convergence Category:01B01 |
2. CJM 2012 (vol 64 pp. 1415)
Global Well-Posedness and Convergence Results for 3D-Regularized Boussinesq System Analytical study to the regularization of the Boussinesq system is
performed in frequency space using Fourier theory. Existence and
uniqueness of weak solution with minimum regularity requirement are
proved. Convergence results of the unique weak solution of the
regularized Boussinesq system to a weak Leray-Hopf solution of the
Boussinesq system are established as the regularizing parameter
$\alpha$ vanishes. The proofs are done in the frequency space and use
energy methods, ArselÃ -Ascoli compactness theorem and a Friedrichs
like approximation scheme.
Keywords:regularizing Boussinesq system, existence and uniqueness of weak solution, convergence results, compactness method in frequency space Categories:35A05, 76D03, 35B40, 35B10, 86A05, 86A10 |
3. CJM 2010 (vol 62 pp. 261)
Erratum to: On Value Distribution Theory of Second Order Periodic ODEs, Special Functions and Orthogonal Polynomials |
Erratum to: On Value Distribution Theory of Second Order Periodic ODEs, Special Functions and Orthogonal Polynomials No abstract.
Keywords:Complex Oscillation theory, Exponent of convergence of zeros, zero distribution of Bessel and Confluent hypergeometric functions, Lommel transform, Bessel polynomials, Heine Problem Categories:34M10, 33C15, 33C47 |
4. CJM 2007 (vol 59 pp. 85)
On the Convergence of a Class of Nearly Alternating Series Let $C$ be the class of convex sequences of real numbers. The
quadratic irrational numbers can be partitioned into two types as
follows. If $\alpha$ is of the first type and $(c_k) \in C$, then
$\sum (-1)^{\lfloor k\alpha \rfloor} c_k$ converges if and only if
$c_k \log k \rightarrow 0$. If $\alpha$ is of the second type and
$(c_k) \in C$, then $\sum (-1)^{\lfloor k\alpha \rfloor} c_k$
converges if and only if $\sum c_k/k$ converges. An example of a
quadratic irrational of the first type is $\sqrt{2}$, and an
example of the second type is $\sqrt{3}$. The analysis of this
problem relies heavily on the representation of $ \alpha$ as a
simple continued fraction and on properties of the sequences of
partial sums $S(n)=\sum_{k=1}^n (-1)^{\lfloor k\alpha \rfloor}$
and double partial sums $T(n)=\sum_{k=1}^n S(k)$.
Keywords:Series, convergence, almost alternating, convex, continued fractions Categories:40A05, 11A55, 11B83 |
5. CJM 2006 (vol 58 pp. 726)
On Value Distribution Theory of Second Order Periodic ODEs, Special Functions and Orthogonal Polynomials |
On Value Distribution Theory of Second Order Periodic ODEs, Special Functions and Orthogonal Polynomials We show that the value distribution (complex oscillation) of
solutions of certain periodic second order ordinary differential
equations studied by Bank, Laine and Langley is closely
related to confluent hypergeometric functions, Bessel functions
and Bessel polynomials. As a result, we give a complete
characterization of the zero-distribution in the sense of
Nevanlinna theory of the solutions for two classes of the ODEs.
Our approach uses special functions and their asymptotics. New
results concerning finiteness of the number of zeros
(finite-zeros) problem of Bessel and Coulomb wave functions with
respect to the parameters are also obtained as a consequence. We
demonstrate that the problem for the remaining class of ODEs not
covered by the above ``special function approach" can be
described by a classical Heine problem for differential
equations that admit polynomial solutions.
Keywords:Complex Oscillation theory, Exponent of convergence of zeros, zero distribution of Bessel and Confluent hypergeometric functions, Lommel transform, Bessel polynomials, Heine Proble Categories:34M10, 33C15, 33C47 |
6. CJM 1999 (vol 51 pp. 250)
Convergence of Subdifferentials of Convexly Composite Functions In this paper we establish conditions that guarantee, in the
setting of a general Banach space, the Painlev\'e-Kuratowski
convergence of the graphs of the subdifferentials of convexly
composite functions. We also provide applications to the
convergence of multipliers of families of constrained optimization
problems and to the generalized second-order derivability of
convexly composite functions.
Keywords:epi-convergence, Mosco convergence, PainlevÃ©-Kuratowski convergence, primal-lower-nice functions, constraint qualification, slice convergence, graph convergence of subdifferentials, convexly composite functions Categories:49A52, 58C06, 58C20, 90C30 |