Expand all Collapse all | Results 1 - 2 of 2 |
1. CJM 2010 (vol 63 pp. 181)
Characterizations of Continuous and Discrete $q$-Ultraspherical Polynomials
We characterize the continuous $q$-ultraspherical polynomials in
terms of the special form of the coefficients in the expansion
$\mathcal{D}_q P_n(x)$ in the basis $\{P_n(x)\}$, $\mathcal{D}_q$
being the Askey--Wilson divided difference operator. The polynomials
are assumed to be symmetric, and the connection coefficients
are multiples of the reciprocal of the square of the $L^2$ norm of
the polynomials. A similar characterization is given for the discrete
$q$-ultraspherical polynomials. A new proof of the evaluation of
the connection coefficients for big $q$-Jacobi polynomials is given.
Keywords:continuous $q$-ultraspherical polynomials, big $q$-Jacobi polynomials, discrete $q$-ultra\-spherical polynomials, Askey--Wilson operator, $q$-difference operator, recursion coefficients Categories:33D45, 42C05 |
2. CJM 2002 (vol 54 pp. 709)
$q$-Integral and Moment Representations for $q$-Orthogonal Polynomials We develop a method for deriving integral representations of certain
orthogonal polynomials as moments. These moment representations are
applied to find linear and multilinear generating functions for
$q$-orthogonal polynomials. As a byproduct we establish new
transformation formulas for combinations of basic hypergeometric
functions, including a new representation of the $q$-exponential
function $\mathcal{E}_q$.
Keywords:$q$-integral, $q$-orthogonal polynomials, associated polynomials, $q$-difference equations, generating functions, Al-Salam-Chihara polynomials, continuous $q$-ultraspherical polynomials Categories:33D45, 33D20, 33C45, 30E05 |