1. CJM 2014 (vol 66 pp. 1201)
 Adler, Jeffrey D.; Lansky, Joshua M.

Lifting Representations of Finite Reductive Groups I: Semisimple Conjugacy Classes
Suppose that $\tilde{G}$ is a connected reductive group
defined over a field $k$, and
$\Gamma$ is a finite group acting via $k$automorphisms
of $\tilde{G}$ satisfying a certain quasisemisimplicity condition.
Then the identity component of the group of $\Gamma$fixed points
in $\tilde{G}$ is reductive.
We axiomatize the main features of the relationship between this
fixedpoint group and the pair $(\tilde{G},\Gamma)$,
and consider any group $G$ satisfying the axioms.
If both $\tilde{G}$ and $G$ are $k$quasisplit, then we
can consider their duals $\tilde{G}^*$ and $G^*$.
We show the existence of and give an explicit formula for a natural
map from the set of semisimple stable conjugacy classes in $G^*(k)$
to the analogous set for $\tilde{G}^*(k)$.
If $k$ is finite, then our groups are automatically quasisplit,
and our result specializes to give a map
of semisimple conjugacy classes.
Since such classes parametrize packets of irreducible representations
of $G(k)$ and $\tilde{G}(k)$, one obtains a mapping of such packets.
Keywords:reductive group, lifting, conjugacy class, representation, Lusztig series Categories:20G15, 20G40, 20C33, 22E35 

2. CJM 1998 (vol 50 pp. 525)
 Brockman, William; Haiman, Mark

Nilpotent orbit varieties and the atomic decomposition of the $q$Kostka polynomials
We study the coordinate rings~$k[\Cmubar\cap\hbox{\Frakvii t}]$ of
schemetheoretic
intersections of nilpotent orbit closures with the diagonal matrices.
Here $\mu'$ gives the Jordan block structure of the nilpotent matrix.
de Concini and Procesi~\cite{deConcini&Procesi} proved a conjecture of
Kraft~\cite{Kraft} that these rings are isomorphic to the cohomology
rings of the varieties constructed by
Springer~\cite{Springer76,Springer78}. The famous $q$Kostka
polynomial~$\Klmt(q)$ is the Hilbert series for the
multiplicity of the irreducible symmetric group representation indexed
by~$\lambda$ in the ring $k[\Cmubar\cap\hbox{\Frakvii t}]$.
\LS~\cite{L&S:Plaxique,Lascoux} gave combinatorially a decomposition
of~$\Klmt(q)$ as a sum of ``atomic'' polynomials with
nonnegative integer coefficients, and Lascoux proposed a
corresponding decomposition in the cohomology model.
Our work provides a geometric interpretation of the atomic
decomposition. The Frobeniussplitting results of Mehta and van der
Kallen~\cite{Mehta&vanderKallen} imply a directsum decomposition of
the ideals of nilpotent orbit closures, arising from the inclusions of
the corresponding sets. We carry out the restriction to the diagonal
using a recent theorem of Broer~\cite{Broer}. This gives a directsum
decomposition of the ideals yielding the $k[\Cmubar\cap
\hbox{\Frakvii t}]$, and a new proof of the atomic decomposition of
the $q$Kostka polynomials.
Keywords:$q$Kostka polynomials, atomic decomposition, nilpotent conjugacy classes, nilpotent orbit varieties Categories:05E10, 14M99, 20G05, 05E15 
