CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword conjugacy class

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2014 (vol 66 pp. 1201)

Adler, Jeffrey D.; Lansky, Joshua M.
Lifting Representations of Finite Reductive Groups I: Semisimple Conjugacy Classes
Suppose that $\tilde{G}$ is a connected reductive group defined over a field $k$, and $\Gamma$ is a finite group acting via $k$-automorphisms of $\tilde{G}$ satisfying a certain quasi-semisimplicity condition. Then the identity component of the group of $\Gamma$-fixed points in $\tilde{G}$ is reductive. We axiomatize the main features of the relationship between this fixed-point group and the pair $(\tilde{G},\Gamma)$, and consider any group $G$ satisfying the axioms. If both $\tilde{G}$ and $G$ are $k$-quasisplit, then we can consider their duals $\tilde{G}^*$ and $G^*$. We show the existence of and give an explicit formula for a natural map from the set of semisimple stable conjugacy classes in $G^*(k)$ to the analogous set for $\tilde{G}^*(k)$. If $k$ is finite, then our groups are automatically quasisplit, and our result specializes to give a map of semisimple conjugacy classes. Since such classes parametrize packets of irreducible representations of $G(k)$ and $\tilde{G}(k)$, one obtains a mapping of such packets.

Keywords:reductive group, lifting, conjugacy class, representation, Lusztig series
Categories:20G15, 20G40, 20C33, 22E35

2. CJM 1998 (vol 50 pp. 525)

Brockman, William; Haiman, Mark
Nilpotent orbit varieties and the atomic decomposition of the $q$-Kostka polynomials
We study the coordinate rings~$k[\Cmubar\cap\hbox{\Frakvii t}]$ of scheme-theoretic intersections of nilpotent orbit closures with the diagonal matrices. Here $\mu'$ gives the Jordan block structure of the nilpotent matrix. de Concini and Procesi~\cite{deConcini&Procesi} proved a conjecture of Kraft~\cite{Kraft} that these rings are isomorphic to the cohomology rings of the varieties constructed by Springer~\cite{Springer76,Springer78}. The famous $q$-Kostka polynomial~$\Klmt(q)$ is the Hilbert series for the multiplicity of the irreducible symmetric group representation indexed by~$\lambda$ in the ring $k[\Cmubar\cap\hbox{\Frakvii t}]$. \LS~\cite{L&S:Plaxique,Lascoux} gave combinatorially a decomposition of~$\Klmt(q)$ as a sum of ``atomic'' polynomials with non-negative integer coefficients, and Lascoux proposed a corresponding decomposition in the cohomology model. Our work provides a geometric interpretation of the atomic decomposition. The Frobenius-splitting results of Mehta and van der Kallen~\cite{Mehta&vanderKallen} imply a direct-sum decomposition of the ideals of nilpotent orbit closures, arising from the inclusions of the corresponding sets. We carry out the restriction to the diagonal using a recent theorem of Broer~\cite{Broer}. This gives a direct-sum decomposition of the ideals yielding the $k[\Cmubar\cap \hbox{\Frakvii t}]$, and a new proof of the atomic decomposition of the $q$-Kostka polynomials.

Keywords:$q$-Kostka polynomials, atomic decomposition, nilpotent conjugacy classes, nilpotent orbit varieties
Categories:05E10, 14M99, 20G05, 05E15

© Canadian Mathematical Society, 2014 : https://cms.math.ca/