CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword compactness

  Expand all        Collapse all Results 1 - 5 of 5

1. CJM 2012 (vol 66 pp. 102)

Birth, Lidia; Glöckner, Helge
Continuity of convolution of test functions on Lie groups
For a Lie group $G$, we show that the map $C^\infty_c(G)\times C^\infty_c(G)\to C^\infty_c(G)$, $(\gamma,\eta)\mapsto \gamma*\eta$ taking a pair of test functions to their convolution is continuous if and only if $G$ is $\sigma$-compact. More generally, consider $r,s,t \in \mathbb{N}_0\cup\{\infty\}$ with $t\leq r+s$, locally convex spaces $E_1$, $E_2$ and a continuous bilinear map $b\colon E_1\times E_2\to F$ to a complete locally convex space $F$. Let $\beta\colon C^r_c(G,E_1)\times C^s_c(G,E_2)\to C^t_c(G,F)$, $(\gamma,\eta)\mapsto \gamma *_b\eta$ be the associated convolution map. The main result is a characterization of those $(G,r,s,t,b)$ for which $\beta$ is continuous. Convolution of compactly supported continuous functions on a locally compact group is also discussed, as well as convolution of compactly supported $L^1$-functions and convolution of compactly supported Radon measures.

Keywords:Lie group, locally compact group, smooth function, compact support, test function, second countability, countable basis, sigma-compactness, convolution, continuity, seminorm, product estimates
Categories:22E30, 46F05, 22D15, 42A85, 43A10, 43A15, 46A03, 46A13, 46E25

2. CJM 2012 (vol 64 pp. 1415)

Selmi, Ridha
Global Well-Posedness and Convergence Results for 3D-Regularized Boussinesq System
Analytical study to the regularization of the Boussinesq system is performed in frequency space using Fourier theory. Existence and uniqueness of weak solution with minimum regularity requirement are proved. Convergence results of the unique weak solution of the regularized Boussinesq system to a weak Leray-Hopf solution of the Boussinesq system are established as the regularizing parameter $\alpha$ vanishes. The proofs are done in the frequency space and use energy methods, Arselà-Ascoli compactness theorem and a Friedrichs like approximation scheme.

Keywords:regularizing Boussinesq system, existence and uniqueness of weak solution, convergence results, compactness method in frequency space
Categories:35A05, 76D03, 35B40, 35B10, 86A05, 86A10

3. CJM 2011 (vol 64 pp. 257)

Chen, Yanping; Ding, Yong; Wang, Xinxia
Compactness of Commutators for Singular Integrals on Morrey Spaces
In this paper we characterize the compactness of the commutator $[b,T]$ for the singular integral operator on the Morrey spaces $L^{p,\lambda}(\mathbb R^n)$. More precisely, we prove that if $b\in \operatorname{VMO}(\mathbb R^n)$, the $\operatorname {BMO} (\mathbb R^n)$-closure of $C_c^\infty(\mathbb R^n)$, then $[b,T]$ is a compact operator on the Morrey spaces $L^{p,\lambda}(\mathbb R^n)$ for $1\lt p\lt \infty$ and $0\lt \lambda\lt n$. Conversely, if $b\in \operatorname{BMO}(\mathbb R^n)$ and $[b,T]$ is a compact operator on the $L^{p,\,\lambda}(\mathbb R^n)$ for some $p\ (1\lt p\lt \infty)$, then $b\in \operatorname {VMO}(\mathbb R^n)$. Moreover, the boundedness of a rough singular integral operator $T$ and its commutator $[b,T]$ on $L^{p,\,\lambda}(\mathbb R^n)$ are also given. We obtain a sufficient condition for a subset in Morrey space to be a strongly pre-compact set, which has interest in its own right.

Keywords:singular integral, commutators, compactness, VMO, Morrey space
Categories:42B20, 42B99

4. CJM 2011 (vol 63 pp. 862)

Hosokawa, Takuya; Nieminen, Pekka J.; Ohno, Shûichi
Linear Combinations of Composition Operators on the Bloch Spaces
We characterize the compactness of linear combinations of analytic composition operators on the Bloch space. We also study their boundedness and compactness on the little Bloch space.

Keywords: composition operator, compactness, Bloch space
Categories:47B33, 30D45, 47B07

5. CJM 2005 (vol 57 pp. 1279)

Maad, Sara
A Semilinear Problem for the Heisenberg Laplacian on Unbounded Domains
We study the semilinear equation \begin{equation*} -\Delta_{\mathbb H} u(\eta) + u(\eta) = f(\eta, u(\eta)),\quad u \in \So(\Omega), \end{equation*} where $\Omega$ is an unbounded domain of the Heisenberg group $\mathbb H^N$, $N\ge 1$. The space $\So(\Omega)$ is the Heisenberg analogue of the Sobolev space $W_0^{1,2}(\Omega)$. The function $f\colon \overline{\Omega}\times \mathbb R\to \mathbb R$ is supposed to be odd in $u$, continuous and satisfy some (superlinear but subcritical) growth conditions. The operator $\Delta_{\mathbb H}$ is the subelliptic Laplacian on the Heisenberg group. We give a condition on $\Omega$ which implies the existence of infinitely many solutions of the above equation. In the proof we rewrite the equation as a variational problem, and show that the corresponding functional satisfies the Palais--Smale condition. This might be quite surprising since we deal with domains which are far from bounded. The technique we use rests on a compactness argument and the maximum principle.

Keywords:Heisenberg group, concentration compactness, Heisenberg Laplacian
Categories:22E30, 22E27

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/