Expand all Collapse all | Results 1 - 5 of 5 |
1. CJM 2012 (vol 66 pp. 102)
Continuity of convolution of test functions on Lie groups For a Lie group $G$, we show that the map
$C^\infty_c(G)\times C^\infty_c(G)\to C^\infty_c(G)$,
$(\gamma,\eta)\mapsto \gamma*\eta$
taking a pair of
test functions to their convolution is continuous if and only if $G$ is $\sigma$-compact.
More generally, consider $r,s,t
\in \mathbb{N}_0\cup\{\infty\}$ with $t\leq r+s$, locally convex spaces $E_1$, $E_2$
and a continuous bilinear map $b\colon E_1\times E_2\to F$
to a complete locally convex space $F$.
Let $\beta\colon C^r_c(G,E_1)\times C^s_c(G,E_2)\to C^t_c(G,F)$,
$(\gamma,\eta)\mapsto \gamma *_b\eta$ be the associated convolution map.
The main result is a characterization of those $(G,r,s,t,b)$
for which $\beta$ is continuous.
Convolution
of compactly supported continuous functions on a locally compact group
is also discussed, as well as convolution of compactly supported $L^1$-functions
and convolution of compactly supported Radon measures.
Keywords:Lie group, locally compact group, smooth function, compact support, test function, second countability, countable basis, sigma-compactness, convolution, continuity, seminorm, product estimates Categories:22E30, 46F05, 22D15, 42A85, 43A10, 43A15, 46A03, 46A13, 46E25 |
2. CJM 2012 (vol 64 pp. 1415)
Global Well-Posedness and Convergence Results for 3D-Regularized Boussinesq System Analytical study to the regularization of the Boussinesq system is
performed in frequency space using Fourier theory. Existence and
uniqueness of weak solution with minimum regularity requirement are
proved. Convergence results of the unique weak solution of the
regularized Boussinesq system to a weak Leray-Hopf solution of the
Boussinesq system are established as the regularizing parameter
$\alpha$ vanishes. The proofs are done in the frequency space and use
energy methods, ArselÃ -Ascoli compactness theorem and a Friedrichs
like approximation scheme.
Keywords:regularizing Boussinesq system, existence and uniqueness of weak solution, convergence results, compactness method in frequency space Categories:35A05, 76D03, 35B40, 35B10, 86A05, 86A10 |
3. CJM 2011 (vol 64 pp. 257)
Compactness of Commutators for Singular Integrals on Morrey Spaces In this paper we characterize the
compactness of the commutator $[b,T]$ for the singular integral
operator on the Morrey spaces $L^{p,\lambda}(\mathbb R^n)$. More
precisely, we prove that if
$b\in \operatorname{VMO}(\mathbb R^n)$, the $\operatorname {BMO}
(\mathbb R^n)$-closure of $C_c^\infty(\mathbb R^n)$,
then $[b,T]$ is a compact operator on the
Morrey spaces $L^{p,\lambda}(\mathbb R^n)$ for $1\lt p\lt \infty$ and
$0\lt \lambda\lt n$. Conversely, if $b\in \operatorname{BMO}(\mathbb R^n)$ and
$[b,T]$ is a compact operator on the $L^{p,\,\lambda}(\mathbb R^n)$
for some $p\ (1\lt p\lt \infty)$, then $b\in \operatorname {VMO}(\mathbb R^n)$.
Moreover, the boundedness of a rough singular integral operator $T$
and its commutator $[b,T]$ on $L^{p,\,\lambda}(\mathbb R^n)$ are also
given. We obtain a sufficient condition for a
subset in Morrey space to be a strongly pre-compact set,
which has interest in its own right.
Keywords:singular integral, commutators, compactness, VMO, Morrey space Categories:42B20, 42B99 |
4. CJM 2011 (vol 63 pp. 862)
Linear Combinations of Composition Operators on the Bloch Spaces We characterize the compactness of linear combinations of analytic
composition operators on the Bloch space. We also study
their boundedness and compactness on the little Bloch space.
Keywords: composition operator, compactness, Bloch space Categories:47B33, 30D45, 47B07 |
5. CJM 2005 (vol 57 pp. 1279)
A Semilinear Problem for the Heisenberg Laplacian on Unbounded Domains We study the semilinear equation
\begin{equation*}
-\Delta_{\mathbb H} u(\eta) + u(\eta) = f(\eta,
u(\eta)),\quad
u \in \So(\Omega),
\end{equation*}
where $\Omega$ is an unbounded domain of the Heisenberg
group $\mathbb H^N$, $N\ge 1$. The space $\So(\Omega)$ is the
Heisenberg analogue of the Sobolev space $W_0^{1,2}(\Omega)$.
The function $f\colon \overline{\Omega}\times
\mathbb R\to \mathbb R$ is supposed to be odd in $u$,
continuous and satisfy some (superlinear but subcritical) growth
conditions. The operator $\Delta_{\mathbb H}$ is
the subelliptic Laplacian on the Heisenberg group. We
give a condition on $\Omega$ which implies the existence of
infinitely many solutions of the above equation. In the proof we
rewrite the equation as a variational problem, and show that the
corresponding functional satisfies the Palais--Smale
condition. This might be quite surprising since we deal with
domains which are far from bounded. The technique we use rests on
a compactness argument and the maximum principle.
Keywords:Heisenberg group, concentration compactness, Heisenberg Laplacian Categories:22E30, 22E27 |