Expand all Collapse all | Results 1 - 7 of 7 |
1. CJM Online first
On Varieties of Lie Algebras of Maximal Class We study complex projective varieties that parametrize
(finite-dimensional) filiform Lie algebras over ${\mathbb C}$,
using equations derived by Millionshchikov. In the
infinite-dimensional case we concentrate our attention on
${\mathbb N}$-graded Lie algebras of maximal class. As shown by A.
Fialowski
there are only
three isomorphism types of $\mathbb{N}$-graded Lie algebras
$L=\oplus^{\infty}_{i=1} L_i$ of maximal class generated by $L_1$
and $L_2$, $L=\langle L_1, L_2 \rangle$. Vergne described the
structure of these algebras with the property $L=\langle L_1
\rangle$. In this paper we study those generated by the first and
$q$-th components where $q\gt 2$, $L=\langle L_1, L_q \rangle$. Under
some technical condition, there can only be one isomorphism type
of such algebras. For $q=3$ we fully classify them. This gives a
partial answer to a question posed by Millionshchikov.
Keywords:filiform Lie algebras, graded Lie algebras, projective varieties, topology, classification Categories:17B70, 14F45 |
2. CJM 2013 (vol 66 pp. 596)
The Ordered $K$-theory of a Full Extension Let $\mathfrak{A}$ be a $C^{*}$-algebra with real rank zero which has
the stable weak cancellation property. Let $\mathfrak{I}$ be an ideal
of $\mathfrak{A}$ such that $\mathfrak{I}$ is stable and satisfies the
corona factorization property. We prove that
$
0 \to \mathfrak{I} \to \mathfrak{A} \to \mathfrak{A} / \mathfrak{I} \to 0
$
is a full extension if and only if the extension is stenotic and
$K$-lexicographic. {As an immediate application, we extend the
classification result for graph $C^*$-algebras obtained by Tomforde
and the first named author to the general non-unital case. In
combination with recent results by Katsura, Tomforde, West and the
first author, our result may also be used to give a purely
$K$-theoretical description of when an essential extension of two
simple and stable graph $C^*$-algebras is again a graph
$C^*$-algebra.}
Keywords:classification, extensions, graph algebras Categories:46L80, 46L35, 46L05 |
3. CJM 2011 (vol 63 pp. 381)
A Complete Classification of AI Algebras with the Ideal Property Let $A$ be an AI algebra; that is, $A$ is the $\mbox{C}^{*}$-algebra inductive limit
of a sequence
$$
A_{1}\stackrel{\phi_{1,2}}{\longrightarrow}A_{2}\stackrel{\phi_{2,3}}{\longrightarrow}A_{3}
\longrightarrow\cdots\longrightarrow A_{n}\longrightarrow\cdots,
$$
where
$A_{n}=\bigoplus_{i=1}^{k_n}M_{[n,i]}(C(X^{i}_n))$,
$X^{i}_n$ are $[0,1]$, $k_n$, and
$[n,i]$ are positive integers.
Suppose that $A$ has the
ideal property: each closed two-sided ideal of $A$ is generated by
the projections inside the ideal, as a closed two-sided ideal.
In this article, we give a complete classification of AI algebras with the ideal property.
Keywords:AI algebras, K-group, tracial state, ideal property, classification Categories:46L35, 19K14, 46L05, 46L08 |
4. CJM 2009 (vol 62 pp. 305)
Approximation and Similarity Classification of Stably Finitely Strongly Irreducible Decomposable Operators |
Approximation and Similarity Classification of Stably Finitely Strongly Irreducible Decomposable Operators Let $\mathcal H$ be a complex separable Hilbert space and ${\mathcal L}({\mathcal H})$ denote the collection of bounded linear operators on ${\mathcal H}$. In this paper, we show that for any operator $A\in{\mathcal L}({\mathcal H})$, there exists a stably finitely (SI) decomposable operator $A_\epsilon$, such that $\|A-A_{\epsilon}\|<\epsilon$ and ${\mathcal{\mathcal A}'(A_{\epsilon})}/\operatorname{rad} {{\mathcal A}'(A_{\epsilon})}$ is commutative, where $\operatorname{rad}{{\mathcal A}'(A_{\epsilon})}$ is the Jacobson radical of ${{\mathcal A}'(A_{\epsilon})}$. Moreover, we give a similarity classification of the stably finitely decomposable operators that generalizes the result on similarity classification of Cowen-Douglas operators given by C. L. Jiang.
Keywords:$K_{0}$-group, strongly irreducible decomposition, CowenâDouglas operators, commutant algebra, similarity classification Categories:47A05, 47A55, 46H20 |
5. CJM 2008 (vol 60 pp. 703)
$\mathcal{Z}$-Stable ASH Algebras The Jiang--Su algebra $\mathcal{Z}$ has come to prominence in the
classification program for nuclear $C^*$-algebras of late, due
primarily to the fact that Elliott's classification conjecture in its
strongest form predicts that all simple, separable, and nuclear
$C^*$-algebras with unperforated $\mathrm{K}$-theory will absorb
$\mathcal{Z}$ tensorially, i.e., will be $\mathcal{Z}$-stable. There
exist counterexamples which suggest that the conjecture will only hold
for simple, nuclear, separable and $\mathcal{Z}$-stable
$C^*$-algebras. We prove that virtually all classes of nuclear
$C^*$-algebras for which the Elliott conjecture has been confirmed so
far consist of $\mathcal{Z}$-stable $C^*$-algebras. This
follows in large part from the following result, also proved herein:
separable and approximately divisible $C^*$-algebras are
$\mathcal{Z}$-stable.
Keywords:nuclear $C^*$-algebras, K-theory, classification Categories:46L85, 46L35 |
6. CJM 1997 (vol 49 pp. 963)
Homomorphisms from $C(X)$ into $C^*$-algebras Let $A$ be a simple $C^*$-algebra
with real rank zero, stable rank one and weakly
unperforated $K_0(A)$ of countable rank. We show that
a monomorphism $\phi\colon C(S^2) \to A$ can be approximated
pointwise by homomorphisms from $C(S^2)$ into $A$ with
finite dimensional range if and only if certain index
vanishes. In particular, we show that every homomorphism
$\phi$ from $C(S^2)$ into a UHF-algebra can be approximated
pointwise by homomorphisms from $C(S^2)$ into the UHF-algebra
with finite dimensional range. As an application, we show
that if $A$ is a simple $C^*$-algebra of real rank zero
and is an inductive limit of matrices over $C(S^2)$ then
$A$ is an AF-algebra. Similar results for tori are also
obtained. Classification of ${\bf Hom}\bigl(C(X),A\bigr)$
for lower dimensional spaces is also studied.
Keywords:Homomorphism of $C(S^2)$, approximation, real, rank zero, classification Categories:46L05, 46L80, 46L35 |
7. CJM 1997 (vol 49 pp. 675)
Some adjunction-theoretic properties of codimension two non-singular subvarities of quadrics We make precise the structure of the first two reduction morphisms
associated with codimension two non-singular subvarieties
of non-singular quadrics $\Q^n$, $n\geq 5$.
We give a coarse classification of the same class of subvarieties
when they are assumed not to be of log-general-type.}
Keywords:Adjunction Theory, classification, codimension two, conic bundles,, low codimension, non log-general-type, quadric, reduction, special, variety. Categories:14C05, 14E05, 14E25, 14E30, 14E35, 14J10 |