1. CJM 2008 (vol 60 pp. 241)
 Alexandrova, Ivana

SemiClassical Wavefront Set and Fourier Integral Operators
Here we define and prove some properties of the semiclassical
wavefront set. We also define and study semiclassical Fourier
integral operators and prove a generalization of Egorov's theorem to
manifolds of different dimensions.
Keywords:wavefront set, Fourier integral operators, Egorov theorem, semiclassical analysis Categories:35S30, 35A27, 58J40, 81Q20 

2. CJM 2004 (vol 56 pp. 1068)
 Steinbach, Anja; Van Maldeghem, Hendrik

Regular Embeddings of Generalized Hexagons
We classify the generalized hexagons which are laxly
embedded in projective space such that the embedding is flat and
polarized. Besides the standard examples related to the hexagons
defined over the algebraic groups of type $\ssG_2$, $^3\ssD_4$ and
$^6\ssD_4$ (and occurring in projective dimensions $5,6,7$), we
find new examples in unbounded dimension related to the mixed
groups of type $\ssG_2$.
Keywords:Moufang generalized hexagons, embeddings, mixed hexagons, classical, hexagons Categories:51E12, 51A45 

3. CJM 1997 (vol 49 pp. 520)
 Ismail, Mourad E. H.; Stanton, Dennis

Classical orthogonal polynomials as moments
We show that the Meixner, Pollaczek, MeixnerPollaczek, the continuous
$q$ultraspherical polynomials and AlSalamChihara polynomials, in
certain normalization, are moments of probability measures. We use
this fact to derive bilinear and multilinear generating functions for
some of these polynomials. We also comment on the corresponding formulas
for the Charlier, Hermite and Laguerre polynomials.
Keywords:Classical orthogonal polynomials, \ACP, continuous, $q$ultraspherical polynomials, generating functions, multilinear, generating functions, transformation formulas, umbral calculus Categories:33D45, 33D20, 33C45, 30E05 
