Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword cardinal invariants

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2012 (vol 64 pp. 1378)

Raghavan, Dilip; Steprāns, Juris
On Weakly Tight Families
Using ideas from Shelah's recent proof that a completely separable maximal almost disjoint family exists when $\mathfrak{c} \lt {\aleph}_{\omega}$, we construct a weakly tight family under the hypothesis $\mathfrak{s} \leq \mathfrak{b} \lt {\aleph}_{\omega}$. The case when $\mathfrak{s} \lt \mathfrak{b}$ is handled in $\mathrm{ZFC}$ and does not require $\mathfrak{b} \lt {\aleph}_{\omega}$, while an additional PCF type hypothesis, which holds when $\mathfrak{b} \lt {\aleph}_{\omega}$ is used to treat the case $\mathfrak{s} = \mathfrak{b}$. The notion of a weakly tight family is a natural weakening of the well studied notion of a Cohen indestructible maximal almost disjoint family. It was introduced by Hrušák and García Ferreira, who applied it to the Katétov order on almost disjoint families.

Keywords:maximal almost disjoint family, cardinal invariants
Categories:03E17, 03E15, 03E35, 03E40, 03E05, 03E50, 03E65

2. CJM 2006 (vol 58 pp. 768)

Hu, Zhiguo; Neufang, Matthias
Decomposability of von Neumann Algebras and the Mazur Property of Higher Level
The decomposability number of a von Neumann algebra $\m$ (denoted by $\dec(\m)$) is the greatest cardinality of a family of pairwise orthogonal non-zero projections in $\m$. In this paper, we explore the close connection between $\dec(\m)$ and the cardinal level of the Mazur property for the predual $\m_*$ of $\m$, the study of which was initiated by the second author. Here, our main focus is on those von Neumann algebras whose preduals constitute such important Banach algebras on a locally compact group $G$ as the group algebra $\lone$, the Fourier algebra $A(G)$, the measure algebra $M(G)$, the algebra $\luc^*$, etc. We show that for any of these von Neumann algebras, say $\m$, the cardinal number $\dec(\m)$ and a certain cardinal level of the Mazur property of $\m_*$ are completely encoded in the underlying group structure. In fact, they can be expressed precisely by two dual cardinal invariants of $G$: the compact covering number $\kg$ of $G$ and the least cardinality $\bg$ of an open basis at the identity of $G$. We also present an application of the Mazur property of higher level to the topological centre problem for the Banach algebra $\ag^{**}$.

Keywords:Mazur property, predual of a von Neumann algebra, locally compact group and its cardinal invariants, group algebra, Fourier algebra, topological centre
Categories:22D05, 43A20, 43A30, 03E55, 46L10

© Canadian Mathematical Society, 2014 :