Expand all Collapse all | Results 1 - 2 of 2 |
1. CJM 2004 (vol 56 pp. 776)
Best Approximation in Riemannian Geodesic Submanifolds of Positive Definite Matrices We explicitly describe
the best approximation in
geodesic submanifolds of positive definite matrices
obtained from involutive
congruence transformations on the
Cartan-Hadamard manifold ${\mathrm{Sym}}(n,{\Bbb R})^{++}$ of
positive definite matrices.
An explicit calculation for the minimal distance
function from the geodesic submanifold
${\mathrm{Sym}}(p,{\mathbb R})^{++}\times
{\mathrm{Sym}}(q,{\mathbb R})^{++}$ block diagonally embedded in
${\mathrm{Sym}}(n,{\mathbb R})^{++}$ is
given in terms of metric and
spectral geometric means, Cayley transform, and Schur
complements of positive definite matrices when $p\leq 2$ or $q\leq 2.$
Keywords:Matrix approximation, positive, definite matrix, geodesic submanifold, Cartan-Hadamard manifold,, best approximation, minimal distance function, global tubular, neighborhood theorem, Schur complement, metric and spectral, geometric mean, Cayley transform Categories:15A48, 49R50, 15A18, 53C3 |
2. CJM 1997 (vol 49 pp. 1034)
Ray sequences of best rational approximants for $|x|^\alpha$ The convergence behavior of best uniform rational
approximations $r^\ast_{mn}$ with numerator degree~$m$
and denominator degree~$n$ to the function $|x|^\alpha$,
$\alpha>0$, on $[-1,1]$ is investigated. It is assumed
that the indices $(m,n)$ progress along a ray sequence in
the lower triangle of the Walsh table, {\it i.e.} the
sequence of indices $\{ (m,n)\}$ satisfies
$$
{m\over n}\rightarrow c\in [1, \infty)\quad\hbox{as } m+
n\rightarrow\infty.
$$
In addition to the convergence behavior, the asymptotic
distribution of poles and zeros of the approximants and the
distribution of the extreme points of the error function
$|x|^\alpha - r^\ast_{mn} (x)$ on $[-1,1]$ will be studied.
The results will be compared with those for paradiagonal
sequences $(m=n+2[\alpha/2])$ and for sequences of best
polynomial approximants.
Keywords:Walsh table, rational approximation, best approximation,, distribution of poles and zeros. Categories:41A25, 41A44 |