Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword automorphic forms

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2015 (vol 68 pp. 179)

Takeda, Shuichiro
Metaplectic Tensor Products for Automorphic Representation of $\widetilde{GL}(r)$
Let $M=\operatorname{GL}_{r_1}\times\cdots\times\operatorname{GL}_{r_k}\subseteq\operatorname{GL}_r$ be a Levi subgroup of $\operatorname{GL}_r$, where $r=r_1+\cdots+r_k$, and $\widetilde{M}$ its metaplectic preimage in the $n$-fold metaplectic cover $\widetilde{\operatorname{GL}}_r$ of $\operatorname{GL}_r$. For automorphic representations $\pi_1,\dots,\pi_k$ of $\widetilde{\operatorname{GL}}_{r_1}(\mathbb{A}),\dots,\widetilde{\operatorname{GL}}_{r_k}(\mathbb{A})$, we construct (under a certain technical assumption, which is always satisfied when $n=2$) an automorphic representation $\pi$ of $\widetilde{M}(\mathbb{A})$ which can be considered as the ``tensor product'' of the representations $\pi_1,\dots,\pi_k$. This is the global analogue of the metaplectic tensor product defined by P. Mezo in the sense that locally at each place $v$, $\pi_v$ is equivalent to the local metaplectic tensor product of $\pi_{1,v},\dots,\pi_{k,v}$ defined by Mezo. Then we show that if all of $\pi_i$ are cuspidal (resp. square-integrable modulo center), then the metaplectic tensor product is cuspidal (resp. square-integrable modulo center). We also show that (both locally and globally) the metaplectic tensor product behaves in the expected way under the action of a Weyl group element, and show the compatibility with parabolic inductions.

Keywords:automorphic forms, representations of covering groups

2. CJM 2011 (vol 65 pp. 22)

Blomer, Valentin; Brumley, Farrell
Non-vanishing of $L$-functions, the Ramanujan Conjecture, and Families of Hecke Characters
We prove a non-vanishing result for families of $\operatorname{GL}_n\times\operatorname{GL}_n$ Rankin-Selberg $L$-functions in the critical strip, as one factor runs over twists by Hecke characters. As an application, we simplify the proof, due to Luo, Rudnick, and Sarnak, of the best known bounds towards the Generalized Ramanujan Conjecture at the infinite places for cusp forms on $\operatorname{GL}_n$. A key ingredient is the regularization of the units in residue classes by the use of an Arakelov ray class group.

Keywords:non-vanishing, automorphic forms, Hecke characters, Ramanujan conjecture
Categories:11F70, 11M41

3. CJM 1999 (vol 51 pp. 952)

Deitmar, Anton; Hoffmann, Werner
On Limit Multiplicities for Spaces of Automorphic Forms
Let $\Gamma$ be a rank-one arithmetic subgroup of a semisimple Lie group~$G$. For fixed $K$-Type, the spectral side of the Selberg trace formula defines a distribution on the space of infinitesimal characters of~$G$, whose discrete part encodes the dimensions of the spaces of square-integrable $\Gamma$-automorphic forms. It is shown that this distribution converges to the Plancherel measure of $G$ when $\Ga$ shrinks to the trivial group in a certain restricted way. The analogous assertion for cocompact lattices $\Gamma$ follows from results of DeGeorge-Wallach and Delorme.

Keywords:limit multiplicities, automorphic forms, noncompact quotients, Selberg trace formula, functional calculus
Categories:11F72, 22E30, 22E40, 43A85, 58G25

© Canadian Mathematical Society, 2016 :