Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword analytic functions

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2015 (vol 68 pp. 88)

Jaffe, Ethan Y.
Pathological Phenomena in Denjoy-Carleman Classes
Let $\mathcal{C}^M$ denote a Denjoy-Carleman class of $\mathcal{C}^\infty$ functions (for a given logarithmically-convex sequence $M = (M_n)$). We construct: (1) a function in $\mathcal{C}^M((-1,1))$ which is nowhere in any smaller class; (2) a function on $\mathbb{R}$ which is formally $\mathcal{C}^M$ at every point, but not in $\mathcal{C}^M(\mathbb{R})$; (3) (under the assumption of quasianalyticity) a smooth function on $\mathbb{R}^p$ ($p \geq 2$) which is $\mathcal{C}^M$ on every $\mathcal{C}^M$ curve, but not in $\mathcal{C}^M(\mathbb{R}^p)$.

Keywords:Denjoy-Carleman classes, quasianalytic functions, quasianalytic curve, arc-quasianalytic

2. CJM 2010 (vol 62 pp. 961)

Aleman, Alexandru; Duren, Peter; Martín, María J.; Vukotić, Dragan
Multiplicative Isometries and Isometric Zero-Divisors
For some Banach spaces of analytic functions in the unit disk (weighted Bergman spaces, Bloch space, Dirichlet-type spaces), the isometric pointwise multipliers are found to be unimodular constants. As a consequence, it is shown that none of those spaces have isometric zero-divisors. Isometric coefficient multipliers are also investigated.

Keywords:Banach spaces of analytic functions, Hardy spaces, Bergman spaces, Bloch space, Dirichlet space, Dirichlet-type spaces, pointwise multipliers, coefficient multipliers, isometries, isometric zero-divisors
Categories:30H05, 46E15

3. CJM 2002 (vol 54 pp. 945)

Boivin, André; Gauthier, Paul M.; Paramonov, Petr V.
Approximation on Closed Sets by Analytic or Meromorphic Solutions of Elliptic Equations and Applications
Given a homogeneous elliptic partial differential operator $L$ with constant complex coefficients and a class of functions (jet-distributions) which are defined on a (relatively) closed subset of a domain $\Omega$ in $\mathbf{R}^n$ and which belong locally to a Banach space $V$, we consider the problem of approximating in the norm of $V$ the functions in this class by ``analytic'' and ``meromorphic'' solutions of the equation $Lu=0$. We establish new Roth, Arakelyan (including tangential) and Carleman type theorems for a large class of Banach spaces $V$ and operators $L$. Important applications to boundary value problems of solutions of homogeneous elliptic partial differential equations are obtained, including the solution of a generalized Dirichlet problem.

Keywords:approximation on closed sets, elliptic operator, strongly elliptic operator, $L$-meromorphic and $L$-analytic functions, localization operator, Banach space of distributions, Dirichlet problem
Categories:30D40, 30E10, 31B35, 35Jxx, 35J67, 41A30

© Canadian Mathematical Society, 2016 :