Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword Shimura varieties

  Expand all        Collapse all Results 1 - 4 of 4

1. CJM Online first

Brasca, Riccardo
Eigenvarieties for cuspforms over PEL type Shimura varieties with dense ordinary locus
Let $p \gt 2$ be a prime and let $X$ be a compactified PEL Shimura variety of type (A) or (C) such that $p$ is an unramified prime for the PEL datum and such that the ordinary locus is dense in the reduction of $X$. Using the geometric approach of Andreatta, Iovita, Pilloni, and Stevens we define the notion of families of overconvergent locally analytic $p$-adic modular forms of Iwahoric level for $X$. We show that the system of eigenvalues of any finite slope cuspidal eigenform of Iwahoric level can be deformed to a family of systems of eigenvalues living over an open subset of the weight space. To prove these results, we actually construct eigenvarieties of the expected dimension that parameterize finite slope systems of eigenvalues appearing in the space of families of cuspidal forms.

Keywords:$p$-adic modular forms, eigenvarieties, PEL-type Shimura varieties
Categories:11F55, 11F33

2. CJM 2013 (vol 66 pp. 1305)

Koskivirta, Jean-Stefan
Congruence Relations for Shimura Varieties Associated with $GU(n-1,1)$
We prove the congruence relation for the mod-$p$ reduction of Shimura varieties associated to a unitary similitude group $GU(n-1,1)$ over $\mathbb{Q}$, when $p$ is inert and $n$ odd. The case when $n$ is even was obtained by T. Wedhorn and O. B?ltel, as a special case of a result of B. Moonen, when the $\mu$-ordinary locus of the $p$-isogeny space is dense. This condition fails in our case. We show that every supersingular irreducible component of the special fiber of $p\textrm{-}\mathscr{I}sog$ is annihilated by a degree one polynomial in the Frobenius element $F$, which implies the congruence relation.

Keywords:Shimura varieties, congruence relation
Categories:11G18, 14G35, 14K10

3. CJM 2013 (vol 65 pp. 1125)

Vandenbergen, Nicolas
On the Global Structure of Special Cycles on Unitary Shimura Varieties
In this paper, we study the reduced loci of special cycles on local models of the Shimura variety for $\operatorname{GU}(1,n-1)$. Those special cycles are defined by Kudla and Rapoport. We explicitly compute the irreducible components of the reduced locus of a single special cycle, as well as of an arbitrary intersection of special cycles, and their intersection behaviour in terms of Bruhat-Tits theory. Furthermore, as an application of our results, we prove the connectedness of arbitrary intersections of special cycles, as conjectured by Kudla and Rapoport.

Keywords:Shimura varieties, local models, special cycles

4. CJM 2011 (vol 64 pp. 1248)

Gärtner, Jérôme
Darmon's Points and Quaternionic Shimura Varieties
In this paper, we generalize a conjecture due to Darmon and Logan in an adelic setting. We study the relation between our construction and Kudla's works on cycles on orthogonal Shimura varieties. This relation allows us to conjecture a Gross-Kohnen-Zagier theorem for Darmon's points.

Keywords:elliptic curves, Stark-Heegner points, quaternionic Shimura varieties
Categories:11G05, 14G35, 11F67, 11G40

© Canadian Mathematical Society, 2015 :