CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword PI

  Expand all        Collapse all Results 1 - 25 of 25

1. CJM Online first

Nishinou, Takeo
Toric Degenerations, Tropical Curve, and Gromov-Witten Invariants of Fano Manifolds
In this paper, we give a tropical method for computing Gromov-Witten type invariants of Fano manifolds of special type. This method applies to those Fano manifolds which admit toric degenerations to toric Fano varieties with singularities allowing small resolutions. Examples include (generalized) flag manifolds of type A, and some moduli space of rank two bundles on a genus two curve.

Keywords:Fano varieties, Gromov-Witten invariants, tropical curves
Category:14J45

2. CJM 2013 (vol 66 pp. 566)

Choiy, Kwangho
Transfer of Plancherel Measures for Unitary Supercuspidal Representations between $p$-adic Inner Forms
Let $F$ be a $p$-adic field of characteristic $0$, and let $M$ be an $F$-Levi subgroup of a connected reductive $F$-split group such that $\Pi_{i=1}^{r} SL_{n_i} \subseteq M \subseteq \Pi_{i=1}^{r} GL_{n_i}$ for positive integers $r$ and $n_i$. We prove that the Plancherel measure for any unitary supercuspidal representation of $M(F)$ is identically transferred under the local Jacquet-Langlands type correspondence between $M$ and its $F$-inner forms, assuming a working hypothesis that Plancherel measures are invariant on a certain set. This work extends the result of Muić and Savin (2000) for Siegel Levi subgroups of the groups $SO_{4n}$ and $Sp_{4n}$ under the local Jacquet-Langlands correspondence. It can be applied to a simply connected simple $F$-group of type $E_6$ or $E_7$, and a connected reductive $F$-group of type $A_{n}$, $B_{n}$, $C_n$ or $D_n$.

Keywords:Plancherel measure, inner form, local to global global argument, cuspidal automorphic representation, Jacquet-Langlands correspondence
Categories:22E50, 11F70, 22E55, 22E35

3. CJM 2013 (vol 65 pp. 1217)

Cruz, Victor; Mateu, Joan; Orobitg, Joan
Beltrami Equation with Coefficient in Sobolev and Besov Spaces
Our goal in this work is to present some function spaces on the complex plane $\mathbb C$, $X(\mathbb C)$, for which the quasiregular solutions of the Beltrami equation, $\overline\partial f (z) = \mu(z) \partial f (z)$, have first derivatives locally in $X(\mathbb C)$, provided that the Beltrami coefficient $\mu$ belongs to $X(\mathbb C)$.

Keywords:quasiregular mappings, Beltrami equation, Sobolev spaces, Calderón-Zygmund operators
Categories:30C62, 35J99, 42B20

4. CJM 2012 (vol 65 pp. 120)

Francois, Georges; Hampe, Simon
Universal Families of Rational Tropical Curves
We introduce the notion of families of $n$-marked smooth rational tropical curves over smooth tropical varieties and establish a one-to-one correspondence between (equivalence classes of) these families and morphisms from smooth tropical varieties into the moduli space of $n$-marked abstract rational tropical curves $\mathcal{M}_{n}$.

Keywords:tropical geometry, universal family, rational curves, moduli space
Categories:14T05, 14D22

5. CJM 2012 (vol 64 pp. 254)

Bell, Jason P.; Hare, Kevin G.
Corrigendum to ``On $\mathbb{Z}$-modules of Algebraic Integers''
We fix a mistake in the proof of Theorem 1.6 in the paper in the title.

Keywords:Pisot numbers, algebraic integers, number rings, Schmidt subspace theorem
Categories:11R04, 11R06

6. CJM 2011 (vol 64 pp. 345)

McKee, James; Smyth, Chris
Salem Numbers and Pisot Numbers via Interlacing
We present a general construction of Salem numbers via rational functions whose zeros and poles mostly lie on the unit circle and satisfy an interlacing condition. This extends and unifies earlier work. We then consider the ``obvious'' limit points of the set of Salem numbers produced by our theorems and show that these are all Pisot numbers, in support of a conjecture of Boyd. We then show that all Pisot numbers arise in this way. Combining this with a theorem of Boyd, we produce all Salem numbers via an interlacing construction.

Keywords:Salem numbers, Pisot numbers
Category:11R06

7. CJM 2011 (vol 64 pp. 573)

Nawata, Norio
Fundamental Group of Simple $C^*$-algebras with Unique Trace III
We introduce the fundamental group ${\mathcal F}(A)$ of a simple $\sigma$-unital $C^*$-algebra $A$ with unique (up to scalar multiple) densely defined lower semicontinuous trace. This is a generalization of ``Fundamental Group of Simple $C^*$-algebras with Unique Trace I and II'' by Nawata and Watatani. Our definition in this paper makes sense for stably projectionless $C^*$-algebras. We show that there exist separable stably projectionless $C^*$-algebras such that their fundamental groups are equal to $\mathbb{R}_+^\times$ by using the classification theorem of Razak and Tsang. This is a contrast to the unital case in Nawata and Watatani. This study is motivated by the work of Kishimoto and Kumjian.

Keywords:fundamental group, Picard group, Hilbert module, countable basis, stably projectionless algebra, dimension function
Categories:46L05, 46L08, 46L35

8. CJM 2011 (vol 64 pp. 409)

Rainer, Armin
Lifting Quasianalytic Mappings over Invariants
Let $\rho \colon G \to \operatorname{GL}(V)$ be a rational finite dimensional complex representation of a reductive linear algebraic group $G$, and let $\sigma_1,\dots,\sigma_n$ be a system of generators of the algebra of invariant polynomials $\mathbb C[V]^G$. We study the problem of lifting mappings $f\colon \mathbb R^q \supseteq U \to \sigma(V) \subseteq \mathbb C^n$ over the mapping of invariants $\sigma=(\sigma_1,\dots,\sigma_n) \colon V \to \sigma(V)$. Note that $\sigma(V)$ can be identified with the categorical quotient $V /\!\!/ G$ and its points correspond bijectively to the closed orbits in $V$. We prove that if $f$ belongs to a quasianalytic subclass $\mathcal C \subseteq C^\infty$ satisfying some mild closedness properties that guarantee resolution of singularities in $\mathcal C$, e.g., the real analytic class, then $f$ admits a lift of the same class $\mathcal C$ after desingularization by local blow-ups and local power substitutions. As a consequence we show that $f$ itself allows for a lift that belongs to $\operatorname{SBV}_{\operatorname{loc}}$, i.e., special functions of bounded variation. If $\rho$ is a real representation of a compact Lie group, we obtain stronger versions.

Keywords:lifting over invariants, reductive group representation, quasianalytic mappings, desingularization, bounded variation
Categories:14L24, 14L30, 20G20, 22E45

9. CJM 2011 (vol 63 pp. 460)

Pavlíček, Libor
Monotonically Controlled Mappings
We study classes of mappings between finite and infinite dimensional Banach spaces that are monotone and mappings which are differences of monotone mappings (DM). We prove a Radó-Reichelderfer estimate for monotone mappings in finite dimensional spaces that remains valid for DM mappings. This provides an alternative proof of the Fréchet differentiability a.e. of DM mappings. We establish a Morrey-type estimate for the distributional derivative of monotone mappings. We prove that a locally DM mapping between finite dimensional spaces is also globally DM. We introduce and study a new class of the so-called UDM mappings between Banach spaces, which generalizes the concept of curves of finite variation.

Keywords: monotone mapping, DM mapping, Radó-Reichelderfer property, UDM mapping, differentiability
Categories:26B05, 46G05

10. CJM 2009 (vol 61 pp. 566)

Graham, Ian; Hamada, Hidetaka; Kohr, Gabriela; Pfaltzgraff, John A.
Convex Subordination Chains in Several Complex Variables
In this paper we study the notion of a convex subordination chain in several complex variables. We obtain certain necessary and sufficient conditions for a mapping to be a convex subordination chain, and we give various examples of convex subordination chains on the Euclidean unit ball in $\mathbb{C}^n$. We also obtain a sufficient condition for injectivity of $f(z/\|z\|,\|z\|)$ on $B^n\setminus\{0\}$, where $f(z,t)$ is a convex subordination chain over $(0,1)$.

Keywords:biholomorphic mapping, convex mapping, convex subordination chain, Loewner chain, subordination
Categories:32H02, 30C45

11. CJM 2009 (vol 61 pp. 641)

Maeda, Sadahiro; Udagawa, Seiichi
Characterization of Parallel Isometric Immersions of Space Forms into Space Forms in the Class of Isotropic Immersions
For an isotropic submanifold $M^n\,(n\geqq3)$ of a space form $\widetilde{M}^{n+p}(c)$ of constant sectional curvature $c$, we show that if the mean curvature vector of $M^n$ is parallel and the sectional curvature $K$ of $M^n$ satisfies some inequality, then the second fundamental form of $M^n$ in $\widetilde{M}^{n+p}$ is parallel and our manifold $M^n$ is a space form.

Keywords:space forms, parallel isometric immersions, isotropic immersions, totally umbilic, Veronese manifolds, sectional curvatures, parallel mean curvature vector
Categories:53C40, 53C42

12. CJM 2009 (vol 61 pp. 264)

Bell, J. P.; Hare, K. G.
On $\BbZ$-Modules of Algebraic Integers
Let $q$ be an algebraic integer of degree $d \geq 2$. Consider the rank of the multiplicative subgroup of $\BbC^*$ generated by the conjugates of $q$. We say $q$ is of {\em full rank} if either the rank is $d-1$ and $q$ has norm $\pm 1$, or the rank is $d$. In this paper we study some properties of $\BbZ[q]$ where $q$ is an algebraic integer of full rank. The special cases of when $q$ is a Pisot number and when $q$ is a Pisot-cyclotomic number are also studied. There are four main results. \begin{compactenum}[\rm(1)] \item If $q$ is an algebraic integer of full rank and $n$ is a fixed positive integer, then there are only finitely many $m$ such that $\disc\left(\BbZ[q^m]\right)=\disc\left(\BbZ[q^n]\right)$. \item If $q$ and $r$ are algebraic integers of degree $d$ of full rank and $\BbZ[q^n] = \BbZ[r^n]$ for infinitely many $n$, then either $q = \omega r'$ or $q={\rm Norm}(r)^{2/d}\omega/r'$, where $r'$ is some conjugate of $r$ and $\omega$ is some root of unity. \item Let $r$ be an algebraic integer of degree at most $3$. Then there are at most $40$ Pisot numbers $q$ such that $\BbZ[q] = \BbZ[r]$. \item There are only finitely many Pisot-cyclotomic numbers of any fixed order. \end{compactenum}

Keywords:algebraic integers, Pisot numbers, full rank, discriminant
Categories:11R04, 11R06

13. CJM 2008 (vol 60 pp. 1067)

Kariyama, Kazutoshi
On Types for Unramified $p$-Adic Unitary Groups
Let $F$ be a non-archimedean local field of residue characteristic neither 2 nor 3 equipped with a galois involution with fixed field $F_0$, and let $G$ be a symplectic group over $F$ or an unramified unitary group over $F_0$. Following the methods of Bushnell--Kutzko for $\GL(N,F)$, we define an analogue of a simple type attached to a certain skew simple stratum, and realize a type in $G$. In particular, we obtain an irreducible supercuspidal representation of $G$ like $\GL(N,F)$.

Keywords:$p$-adic unitary group, type, supercuspidal representation, Hecke algebra
Categories:22E50, 22D99

14. CJM 2008 (vol 60 pp. 721)

Adamus, J.; Bierstone, E.; Milman, P. D.
Uniform Linear Bound in Chevalley's Lemma
We obtain a uniform linear bound for the Chevalley function at a point in the source of an analytic mapping that is regular in the sense of Gabrielov. There is a version of Chevalley's lemma also along a fibre, or at a point of the image of a proper analytic mapping. We get a uniform linear bound for the Chevalley function of a closed Nash (or formally Nash) subanalytic set.

Keywords:Chevalley function, regular mapping, Nash subanalytic set
Categories:13J07, 32B20, 13J10, 32S10

15. CJM 2007 (vol 59 pp. 696)

Bangoura, Momo
Algèbres de Lie d'homotopie associées à une proto-bigèbre de Lie
On associe \`a toute structure de proto-big\`ebre de Lie sur un espace vectoriel $F$ de dimension finie des structures d'alg\`ebre de Lie d'homotopie d\'efinies respectivement sur la suspension de l'alg\`ebre ext\'erieure de $F$ et celle de son dual $F^*$. Dans ces alg\`ebres, tous les crochets $n$-aires sont nuls pour $n \geq 4$ du fait qu'ils proviennent d'une structure de proto-big\`ebre de Lie. Plus g\'en\'eralement, on associe \`a un \'el\'ement de degr\'e impair de l'alg\`ebre ext\'erieure de la somme directe de $F$ et $F^*$, une collection d'applications multilin\'eaires antisym\'etriques sur l'alg\`ebre ext\'erieure de $F$ (resp.\ $F^*$), qui v\'erifient les identit\'es de Jacobi g\'en\'eralis\'ees, d\'efinissant les alg\`ebres de Lie d'homotopie, si l'\'el\'ement donn\'e est de carr\'e nul pour le grand crochet de l'alg\`ebre ext\'erieure de la somme directe de $F$ et de~$F^*$. To any proto-Lie algebra structure on a finite-dimensional vector space~$F$, we associate homotopy Lie algebra structures defined on the suspension of the exterior algebra of $F$ and that of its dual $F^*$, respectively. In these algebras, all $n$-ary brackets for $n \geq 4$ vanish because the brackets are defined by the proto-Lie algebra structure. More generally, to any element of odd degree in the exterior algebra of the direct sum of $F$ and $F^*$, we associate a set of multilinear skew-symmetric mappings on the suspension of the exterior algebra of $F$ (resp.\ $F^*$), which satisfy the generalized Jacobi identities, defining the homotopy Lie algebras, if the given element is of square zero with respect to the big bracket of the exterior algebra of the direct sum of $F$ and~$F^*$.

Keywords:algèbre de Lie d'homotopie, bigèbre de Lie, quasi-bigèbre de Lie, proto-bigèbre de Lie, crochet dérivé, jacobiateur
Categories:17B70, 17A30

16. CJM 2007 (vol 59 pp. 465)

Barr, Michael; Kennison, John F.; Raphael, R.
Searching for Absolute $\mathcal{CR}$-Epic Spaces
In previous papers, Barr and Raphael investigated the situation of a topological space $Y$ and a subspace $X$ such that the induced map $C(Y)\to C(X)$ is an epimorphism in the category $\CR$ of commutative rings (with units). We call such an embedding a $\CR$-epic embedding and we say that $X$ is absolute $\CR$-epic if every embedding of $X$ is $\CR$-epic. We continue this investigation. Our most notable result shows that a Lindel\"of space $X$ is absolute $\CR$-epic if a countable intersection of $\beta X$-neighbourhoods of $X$ is a $\beta X$-neighbourhood of $X$. This condition is stable under countable sums, the formation of closed subspaces, cozero-subspaces, and being the domain or codomain of a perfect map. A strengthening of the Lindel\"of property leads to a new class with the same closure properties that is also closed under finite products. Moreover, all \s-compact spaces and all Lindel\"of $P$-spaces satisfy this stronger condition. We get some results in the non-Lindel\"of case that are sufficient to show that the Dieudonn\'e plank and some closely related spaces are absolute $\CR$-epic.

Keywords:absolute $\mathcal{CR}$-epics, countable neighbourhoo9d property, amply Lindelöf, Diuedonné plank
Categories:18A20, 54C45, 54B30

17. CJM 2005 (vol 57 pp. 1012)

Karigiannis, Spiro
Deformations of $G_2$ and $\Spin(7)$ Structures
We consider some deformations of $G_2$-structures on $7$-manifolds. We discover a canonical way to deform a $G_2$-structure by a vector field in which the associated metric gets ``twisted'' in some way by the vector cross product. We present a system of partial differential equations for an unknown vector field $w$ whose solution would yield a manifold with holonomy $G_2$. Similarly we consider analogous constructions for $\Spin(7)$-structures on $8$-manifolds. Some of the results carry over directly, while others do not because of the increased complexity of the $\Spin(7)$ case.

Keywords:$G_2 \Spin(7)$, holonomy, metrics, cross product
Categories:53C26, 53C29

18. CJM 2000 (vol 52 pp. 522)

Gui, Changfeng; Wei, Juncheng
On Multiple Mixed Interior and Boundary Peak Solutions for Some Singularly Perturbed Neumann Problems
We consider the problem \begin{equation*} \begin{cases} \varepsilon^2 \Delta u - u + f(u) = 0, u > 0 & \mbox{in } \Omega\\ \frac{\partial u}{\partial \nu} = 0 & \mbox{on } \partial\Omega, \end{cases} \end{equation*} where $\Omega$ is a bounded smooth domain in $R^N$, $\ve>0$ is a small parameter and $f$ is a superlinear, subcritical nonlinearity. It is known that this equation possesses multiple boundary spike solutions that concentrate, as $\epsilon$ approaches zero, at multiple critical points of the mean curvature function $H(P)$, $P \in \partial \Omega$. It is also proved that this equation has multiple interior spike solutions which concentrate, as $\ep\to 0$, at {\it sphere packing\/} points in $\Om$. In this paper, we prove the existence of solutions with multiple spikes {\it both\/} on the boundary and in the interior. The main difficulty lies in the fact that the boundary spikes and the interior spikes usually have different scales of error estimation. We have to choose a special set of boundary spikes to match the scale of the interior spikes in a variational approach.

Keywords:mixed multiple spikes, nonlinear elliptic equations
Categories:35B40, 35B45, 35J40

19. CJM 1999 (vol 51 pp. 673)

Barlow, Martin T.; Bass, Richard F.
Brownian Motion and Harmonic Analysis on Sierpinski Carpets
We consider a class of fractal subsets of $\R^d$ formed in a manner analogous to the construction of the Sierpinski carpet. We prove a uniform Harnack inequality for positive harmonic functions; study the heat equation, and obtain upper and lower bounds on the heat kernel which are, up to constants, the best possible; construct a locally isotropic diffusion $X$ and determine its basic properties; and extend some classical Sobolev and Poincar\'e inequalities to this setting.

Keywords:Sierpinski carpet, fractal, Hausdorff dimension, spectral dimension, Brownian motion, heat equation, harmonic functions, potentials, reflecting Brownian motion, coupling, Harnack inequality, transition densities, fundamental solutions
Categories:60J60, 60B05, 60J35

20. CJM 1999 (vol 51 pp. 470)

Bshouty, D.; Hengartner, W.
Exterior Univalent Harmonic Mappings With Finite Blaschke Dilatations
In this article we characterize the univalent harmonic mappings from the exterior of the unit disk, $\Delta$, onto a simply connected domain $\Omega$ containing infinity and which are solutions of the system of elliptic partial differential equations $\fzbb = a(z)f_z(z)$ where the second dilatation function $a(z)$ is a finite Blaschke product. At the end of this article, we apply our results to nonparametric minimal surfaces having the property that the image of its Gauss map is the upper half-sphere covered once or twice.

Keywords:harmonic mappings, minimal surfaces
Categories:30C55, 30C62, 49Q05

21. CJM 1999 (vol 51 pp. 250)

Combari, C.; Poliquin, R.; Thibault, L.
Convergence of Subdifferentials of Convexly Composite Functions
In this paper we establish conditions that guarantee, in the setting of a general Banach space, the Painlev\'e-Kuratowski convergence of the graphs of the subdifferentials of convexly composite functions. We also provide applications to the convergence of multipliers of families of constrained optimization problems and to the generalized second-order derivability of convexly composite functions.

Keywords:epi-convergence, Mosco convergence, Painlevé-Kuratowski convergence, primal-lower-nice functions, constraint qualification, slice convergence, graph convergence of subdifferentials, convexly composite functions
Categories:49A52, 58C06, 58C20, 90C30

22. CJM 1997 (vol 49 pp. 1281)

Sottile, Frank
Pieri's formula via explicit rational equivalence
Pieri's formula describes the intersection product of a Schubert cycle by a special Schubert cycle on a Grassmannian. We present a new geometric proof, exhibiting an explicit chain of rational equivalences from a suitable sum of distinct Schubert cycles to the intersection of a Schubert cycle with a special Schubert cycle. The geometry of these rational equivalences indicates a link to a combinatorial proof of Pieri's formula using Schensted insertion.

Keywords:Pieri's formula, rational equivalence, Grassmannian, Schensted insertion
Categories:14M15, 05E10

23. CJM 1997 (vol 49 pp. 887)

Borwein, Peter; Pinner, Christopher
Polynomials with $\{ 0, +1, -1\}$ coefficients and a root close to a given point
For a fixed algebraic number $\alpha$ we discuss how closely $\alpha$ can be approximated by a root of a $\{0,+1,-1\}$ polynomial of given degree. We show that the worst rate of approximation tends to occur for roots of unity, particularly those of small degree. For roots of unity these bounds depend on the order of vanishing, $k$, of the polynomial at $\alpha$. In particular we obtain the following. Let ${\cal B}_{N}$ denote the set of roots of all $\{0,+1,-1\}$ polynomials of degree at most $N$ and ${\cal B}_{N}(\alpha,k)$ the roots of those polynomials that have a root of order at most $k$ at $\alpha$. For a Pisot number $\alpha$ in $(1,2]$ we show that \[ \min_{\beta \in {\cal B}_{N}\setminus \{ \alpha \}} |\alpha -\beta| \asymp \frac{1}{\alpha^{N}}, \] and for a root of unity $\alpha$ that \[ \min_{\beta \in {\cal B}_{N}(\alpha,k)\setminus \{\alpha\}} |\alpha -\beta|\asymp \frac{1}{N^{(k+1) \left\lceil \frac{1}{2}\phi (d)\right\rceil +1}}. \] We study in detail the case of $\alpha=1$, where, by far, the best approximations are real. We give fairly precise bounds on the closest real root to 1. When $k=0$ or 1 we can describe the extremal polynomials explicitly.

Keywords:Mahler measure, zero one polynomials, Pisot numbers, root separation
Categories:11J68, 30C10

24. CJM 1997 (vol 49 pp. 798)

Yu, Minqi; Lian, Xiting
Boundedness of solutions of parabolic equations with anisotropic growth conditions
In this paper, we consider the parabolic equation with anisotropic growth conditions, and obtain some criteria on boundedness of solutions, which generalize the corresponding results for the isotropic case.

Keywords:Parabolic equation, anisotropic growth conditions, generalized, solution, boundness
Categories:35K57, 35K99.

25. CJM 1997 (vol 49 pp. 3)

Akcoglu, Mustafa A.; Ha, Dzung M.; Jones, Roger L.
Sweeping out properties of operator sequences
Let $L_p=L_p(X,\mu)$, $1\leq p\leq\infty$, be the usual Banach Spaces of real valued functions on a complete non-atomic probability space. Let $(T_1,\ldots,T_{K})$ be $L_2$-contractions. Let $0<\varepsilon < \delta\leq1$. Call a function $f$ a $\delta$-spanning function if $\|f\|_2 = 1$ and if $\|T_kf-Q_{k-1}T_kf\|_2\geq\delta$ for each $k=1,\ldots,K$, where $Q_0=0$ and $Q_k$ is the orthogonal projection on the subspace spanned by $(T_1f,\ldots,T_kf)$. Call a function $h$ a $(\delta,\varepsilon)$-sweeping function if $\|h\|_\infty\leq1$, $\|h\|_1<\varepsilon$, and if $\max_{1\leq k\leq K}|T_kh|>\delta-\varepsilon$ on a set of measure greater than $1-\varepsilon$. The following is the main technical result, which is obtained by elementary estimates. There is an integer $K=K(\varepsilon,\delta)\geq1$ such that if $f$ is a $\delta$-spanning function, and if the joint distribution of $(f,T_1f,\ldots,T_Kf)$ is normal, then $h=\bigl((f\wedge M)\vee(-M)\bigr)/M$ is a $(\delta,\varepsilon)$-sweeping function, for some $M>0$. Furthermore, if $T_k$s are the averages of operators induced by the iterates of a measure preserving ergodic transformation, then a similar result is true without requiring that the joint distribution is normal. This gives the following theorem on a sequence $(T_i)$ of these averages. Assume that for each $K\geq1$ there is a subsequence $(T_{i_1},\ldots,T_{i_K})$ of length $K$, and a $\delta$-spanning function $f_K$ for this subsequence. Then for each $\varepsilon>0$ there is a function $h$, $0\leq h\leq1$, $\|h\|_1<\varepsilon$, such that $\limsup_iT_ih\geq\delta$ a.e.. Another application of the main result gives a refinement of a part of Bourgain's ``Entropy Theorem'', resulting in a different, self contained proof of that theorem.

Keywords:Strong and $\delta$-sweeping out, Gaussian distributions, Bourgain's entropy theorem.
Categories:28D99, 60F99

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/