CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword Kac-Moody algebra

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2016 (vol 69 pp. 107)

Kamgarpour, Masoud
On the Notion of Conductor in the Local Geometric Langlands Correspondence
Under the local Langlands correspondence, the conductor of an irreducible representation of $\operatorname{Gl}_n(F)$ is greater than the Swan conductor of the corresponding Galois representation. In this paper, we establish the geometric analogue of this statement by showing that the conductor of a categorical representation of the loop group is greater than the irregularity of the corresponding meromorphic connection.

Keywords:local geometric Langlands, connections, cyclic vectors, opers, conductors, Segal-Sugawara operators, Chervov-Molev operators, critical level, smooth representations, affine Kac-Moody algebra, categorical representations
Categories:17B67, 17B69, 22E50, 20G25

2. CJM 2000 (vol 52 pp. 503)

Gannon, Terry
The Level 2 and 3 Modular Invariants for the Orthogonal Algebras
The `1-loop partition function' of a rational conformal field theory is a sesquilinear combination of characters, invariant under a natural action of $\SL_2(\bbZ)$, and obeying an integrality condition. Classifying these is a clearly defined mathematical problem, and at least for the affine Kac-Moody algebras tends to have interesting solutions. This paper finds for each affine algebra $B_r^{(1)}$ and $D_r^{(1)}$ all of these at level $k\le 3$. Previously, only those at level 1 were classified. An extraordinary number of exceptionals appear at level 2---the $B_r^{(1)}$, $D_r^{(1)}$ level 2 classification is easily the most anomalous one known and this uniqueness is the primary motivation for this paper. The only level 3 exceptionals occur for $B_2^{(1)} \cong C_2^{(1)}$ and $D_7^{(1)}$. The $B_{2,3}$ and $D_{7,3}$ exceptionals are cousins of the ${\cal E}_6$-exceptional and $\E_8$-exceptional, respectively, in the A-D-E classification for $A_1^{(1)}$, while the level 2 exceptionals are related to the lattice invariants of affine~$u(1)$.

Keywords:Kac-Moody algebra, conformal field theory, modular invariants
Categories:17B67, 81T40

© Canadian Mathematical Society, 2017 : https://cms.math.ca/