CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword K-theory

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2008 (vol 60 pp. 703)

Toms, Andrew S.; Winter, Wilhelm
$\mathcal{Z}$-Stable ASH Algebras
The Jiang--Su algebra $\mathcal{Z}$ has come to prominence in the classification program for nuclear $C^*$-algebras of late, due primarily to the fact that Elliott's classification conjecture in its strongest form predicts that all simple, separable, and nuclear $C^*$-algebras with unperforated $\mathrm{K}$-theory will absorb $\mathcal{Z}$ tensorially, i.e., will be $\mathcal{Z}$-stable. There exist counterexamples which suggest that the conjecture will only hold for simple, nuclear, separable and $\mathcal{Z}$-stable $C^*$-algebras. We prove that virtually all classes of nuclear $C^*$-algebras for which the Elliott conjecture has been confirmed so far consist of $\mathcal{Z}$-stable $C^*$-algebras. This follows in large part from the following result, also proved herein: separable and approximately divisible $C^*$-algebras are $\mathcal{Z}$-stable.

Keywords:nuclear $C^*$-algebras, K-theory, classification
Categories:46L85, 46L35

2. CJM 2001 (vol 53 pp. 631)

Walters, Samuel G.
K-Theory of Non-Commutative Spheres Arising from the Fourier Automorphism
For a dense $G_\delta$ set of real parameters $\theta$ in $[0,1]$ (containing the rationals) it is shown that the group $K_0 (A_\theta \rtimes_\sigma \mathbb{Z}_4)$ is isomorphic to $\mathbb{Z}^9$, where $A_\theta$ is the rotation C*-algebra generated by unitaries $U$, $V$ satisfying $VU = e^{2\pi i\theta} UV$ and $\sigma$ is the Fourier automorphism of $A_\theta$ defined by $\sigma(U) = V$, $\sigma(V) = U^{-1}$. More precisely, an explicit basis for $K_0$ consisting of nine canonical modules is given. (A slight generalization of this result is also obtained for certain separable continuous fields of unital C*-algebras over $[0,1]$.) The Connes Chern character $\ch \colon K_0 (A_\theta \rtimes_\sigma \mathbb{Z}_4) \to H^{\ev} (A_\theta \rtimes_\sigma \mathbb{Z}_4)^*$ is shown to be injective for a dense $G_\delta$ set of parameters $\theta$. The main computational tool in this paper is a group homomorphism $\vtr \colon K_0 (A_\theta \rtimes_\sigma \mathbb{Z}_4) \to \mathbb{R}^8 \times \mathbb{Z}$ obtained from the Connes Chern character by restricting the functionals in its codomain to a certain nine-dimensional subspace of $H^{\ev} (A_\theta \rtimes_\sigma \mathbb{Z}_4)$. The range of $\vtr$ is fully determined for each $\theta$. (We conjecture that this subspace is all of $H^{\ev}$.)

Keywords:C*-algebras, K-theory, automorphisms, rotation algebras, unbounded traces, Chern characters
Categories:46L80, 46L40, 19K14

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/