CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword Jacquet-Langlands correspondence

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2016 (vol 68 pp. 961)

Greenberg, Matthew; Seveso, Marco
$p$-adic Families of Cohomological Modular Forms for Indefinite Quaternion Algebras and the Jacquet-Langlands Correspondence
We use the method of Ash and Stevens to prove the existence of small slope $p$-adic families of cohomological modular forms for an indefinite quaternion algebra $B$. We prove that the Jacquet-Langlands correspondence relating modular forms on $\textbf{GL}_2/\mathbb{Q}$ and cohomomological modular forms for $B$ is compatible with the formation of $p$-adic families. This result is an analogue of a theorem of Chenevier concerning definite quaternion algebras.

Keywords:modular forms, p-adic families, Jacquet-Langlands correspondence, Shimura curves, eigencurves
Categories:11F11, 11F67, 11F85

2. CJM 2013 (vol 66 pp. 566)

Choiy, Kwangho
Transfer of Plancherel Measures for Unitary Supercuspidal Representations between $p$-adic Inner Forms
Let $F$ be a $p$-adic field of characteristic $0$, and let $M$ be an $F$-Levi subgroup of a connected reductive $F$-split group such that $\Pi_{i=1}^{r} SL_{n_i} \subseteq M \subseteq \Pi_{i=1}^{r} GL_{n_i}$ for positive integers $r$ and $n_i$. We prove that the Plancherel measure for any unitary supercuspidal representation of $M(F)$ is identically transferred under the local Jacquet-Langlands type correspondence between $M$ and its $F$-inner forms, assuming a working hypothesis that Plancherel measures are invariant on a certain set. This work extends the result of Muić and Savin (2000) for Siegel Levi subgroups of the groups $SO_{4n}$ and $Sp_{4n}$ under the local Jacquet-Langlands correspondence. It can be applied to a simply connected simple $F$-group of type $E_6$ or $E_7$, and a connected reductive $F$-group of type $A_{n}$, $B_{n}$, $C_n$ or $D_n$.

Keywords:Plancherel measure, inner form, local to global global argument, cuspidal automorphic representation, Jacquet-Langlands correspondence
Categories:22E50, 11F70, 22E55, 22E35

© Canadian Mathematical Society, 2016 : https://cms.math.ca/