Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword Homeomorphism

  Expand all        Collapse all Results 1 - 4 of 4

1. CJM 2014 (vol 67 pp. 330)

Bernardes, Nilson C.; Vermersch, Rômulo M.
Hyperspace Dynamics of Generic Maps of the Cantor Space
We study the hyperspace dynamics induced from generic continuous maps and from generic homeomorphisms of the Cantor space, with emphasis on the notions of Li-Yorke chaos, distributional chaos, topological entropy, chain continuity, shadowing and recurrence.

Keywords:cantor space, continuous maps, homeomorphisms, hyperspace, dynamics
Categories:37B99, 54H20, 54E52

2. CJM 2013 (vol 65 pp. 1287)

Reihani, Kamran
$K$-theory of Furstenberg Transformation Group $C^*$-algebras
The paper studies the $K$-theoretic invariants of the crossed product $C^{*}$-algebras associated with an important family of homeomorphisms of the tori $\mathbb{T}^{n}$ called Furstenberg transformations. Using the Pimsner-Voiculescu theorem, we prove that given $n$, the $K$-groups of those crossed products, whose corresponding $n\times n$ integer matrices are unipotent of maximal degree, always have the same rank $a_{n}$. We show using the theory developed here that a claim made in the literature about the torsion subgroups of these $K$-groups is false. Using the representation theory of the simple Lie algebra $\frak{sl}(2,\mathbb{C})$, we show that, remarkably, $a_{n}$ has a combinatorial significance. For example, every $a_{2n+1}$ is just the number of ways that $0$ can be represented as a sum of integers between $-n$ and $n$ (with no repetitions). By adapting an argument of van Lint (in which he answered a question of Erdős), a simple, explicit formula for the asymptotic behavior of the sequence $\{a_{n}\}$ is given. Finally, we describe the order structure of the $K_{0}$-groups of an important class of Furstenberg crossed products, obtaining their complete Elliott invariant using classification results of H. Lin and N. C. Phillips.

Keywords:$K$-theory, transformation group $C^*$-algebra, Furstenberg transformation, Anzai transformation, minimal homeomorphism, positive cone, minimal homeomorphism
Categories:19K14, 19K99, 46L35, 46L80, , 05A15, 05A16, 05A17, 15A36, 17B10, 17B20, 37B05, 54H20

3. CJM 2009 (vol 61 pp. 708)

Zelenyuk, Yevhen
Regular Homeomorphisms of Finite Order on Countable Spaces
We present a structure theorem for a broad class of homeomorphisms of finite order on countable zero dimensional spaces. As applications we show the following. \begin{compactenum}[\rm(a)] \item Every countable nondiscrete topological group not containing an open Boolean subgroup can be partitioned into infinitely many dense subsets. \item If $G$ is a countably infinite Abelian group with finitely many elements of order $2$ and $\beta G$ is the Stone--\v Cech compactification of $G$ as a discrete semigroup, then for every idempotent $p\in\beta G\setminus\{0\}$, the subset $\{p,-p\}\subset\beta G$ generates algebraically the free product of one-element semigroups $\{p\}$ and~$\{-p\}$. \end{compactenum}

Keywords:Homeomorphism, homogeneous space, topological group, resolvability, Stone-\v Cech compactification
Categories:22A30, 54H11, 20M15, 54A05

4. CJM 2006 (vol 58 pp. 529)

Dijkstra, Jan J.; Mill, Jan van
On the Group of Homeomorphisms of the Real Line That Map the Pseudoboundary Onto Itself
In this paper we primarily consider two natural subgroups of the autohomeomorphism group of the real line $\R$, endowed with the compact-open topology. First, we prove that the subgroup of homeomorphisms that map the set of rational numbers $\Q$ onto itself is homeomorphic to the infinite power of $\Q$ with the product topology. Secondly, the group consisting of homeomorphisms that map the pseudoboundary onto itself is shown to be homeomorphic to the hyperspace of nonempty compact subsets of $\Q$ with the Vietoris topology. We obtain similar results for the Cantor set but we also prove that these results do not extend to $\R^n$ for $n\ge 2$, by linking the groups in question with Erd\H os space.

Keywords:homeomorphism group, real line, countable dense set, pseudoboundary, Erd\H{o}s space, hyperspace

© Canadian Mathematical Society, 2015 :