1. CJM 2013 (vol 65 pp. 1384)
 Wright, Paul

Estimates of Hausdorff Dimension for Nonwandering Sets of Higher Dimensional Open Billiards
This article concerns a class of open billiards consisting of a finite
number of strictly convex, noneclipsing obstacles $K$. The
nonwandering set $M_0$ of the billiard ball map is a topological
Cantor set and its Hausdorff dimension has been previously estimated
for billiards in $\mathbb{R}^2$, using wellknown techniques. We
extend these estimates to billiards in $\mathbb{R}^n$, and make
various refinements to the estimates. These refinements also allow
improvements to other results. We also show that in many cases, the
nonwandering set is confined to a particular subset of $\mathbb{R}^n$
formed by the convex hull of points determined by period 2
orbits. This allows more accurate bounds on the constants used in
estimating Hausdorff dimension.
Keywords:dynamical systems, billiards, dimension, Hausdorff Categories:37D20, 37D40 

2. CJM 2012 (vol 64 pp. 1182)
 Tall, Franklin D.

PFA$(S)[S]$: More Mutually Consistent Topological Consequences of $PFA$ and $V=L$
Extending the work of Larson and Todorcevic,
we show there
is a model of set theory in which normal spaces are collectionwise
Hausdorff if they are either first countable or locally compact, and
yet there are no first countable $L$spaces or compact
$S$spaces. The model is one of the form PFA$(S)[S]$, where $S$
is a coherent Souslin tree.
Keywords:PFA$(S)[S]$, proper forcing, coherent Souslin tree, locally compact, normal, collectionwise Hausdorff, supercompact cardinal Categories:54A35, 54D15, 54D20, 54D45, 03E35, 03E57, 03E65 

3. CJM 2011 (vol 63 pp. 481)
 Baragar, Arthur

The Ample Cone for a K3 Surface
In this paper, we give several pictorial fractal
representations of the ample or KÃ¤hler cone for surfaces in a
certain class of $K3$ surfaces. The class includes surfaces
described by smooth $(2,2,2)$ forms in ${\mathbb P^1\times\mathbb P^1\times \mathbb P^1}$ defined over a
sufficiently large number field $K$ that have a line parallel to
one of the axes and have Picard number four. We relate the
Hausdorff dimension of this fractal to the asymptotic growth of
orbits of curves under the action of the surface's group of
automorphisms. We experimentally estimate the Hausdorff dimension
of the fractal to be $1.296 \pm .010$.
Keywords:Fractal, Hausdorff dimension, K3 surface, Kleinian groups, dynamics Categories:14J28, , , , 14J50, 11D41, 11D72, 11H56, 11G10, 37F35, 37D05 

4. CJM 2008 (vol 60 pp. 658)
 Mihailescu, Eugen; Urba\'nski, Mariusz

Inverse Pressure Estimates and the Independence of Stable Dimension for NonInvertible Maps
We study the case of an Axiom A holomorphic nondegenerate
(hence noninvertible) map $f\from\mathbb P^2
\mathbb C \to \mathbb P^2 \mathbb C$, where $\mathbb P^2 \mathbb C$
stands for the complex
projective space of dimension 2. Let $\Lambda$ denote a basic set for
$f$ of unstable index 1, and $x$ an arbitrary point of $\Lambda$; we
denote by $\delta^s(x)$ the Hausdorff dimension of $W^s_r(x) \cap
\Lambda$, where $r$ is some fixed positive number and $W^s_r(x)$ is
the local stable manifold at $x$ of size $r$; $\delta^s(x)$ is called
\emph{the stable dimension at} $x$. Mihailescu and
Urba\'nski introduced a notion of inverse topological pressure,
denoted by $P^$, which takes into consideration preimages of points.
Manning and McCluskey study the case of hyperbolic diffeomorphisms on
real surfaces and give formulas for Hausdorff dimension. Our
noninvertible situation is different here since the local unstable
manifolds are not uniquely determined by their base point, instead
they depend in general on whole prehistories of the base points. Hence
our methods are different and are based on using a sequence of inverse
pressures for the iterates of $f$, in order to give upper and lower
estimates of the stable dimension. We obtain an estimate of the
oscillation of the stable dimension on $\Lambda$. When each point $x$
from $\Lambda$ has the same number $d'$ of preimages in $\Lambda$,
then we show that $\delta^s(x)$ is independent
of $x$; in fact $\delta^s(x)$ is shown to be equal in this case with
the unique zero of the map $t \to P(t\phi^s  \log d')$. We also
prove the Lipschitz continuity of the stable vector spaces over
$\Lambda$; this proof is again different than the one for
diffeomorphisms (however, the unstable distribution is not always
Lipschitz for conformal noninvertible maps). In the end we include
the corresponding results for a real conformal setting.
Keywords:Hausdorff dimension, stable manifolds, basic sets, inverse topological pressure Categories:37D20, 37A35, 37F35 

5. CJM 2002 (vol 54 pp. 1280)
 Skrzypczak, Leszek

Besov Spaces and Hausdorff Dimension For Some CarnotCarathÃ©odory Metric Spaces
We regard a system of left invariant vector fields $\mathcal{X}=\{X_1,\dots,X_k\}$
satisfying the H\"ormander condition and the related CarnotCarath\'eodory metric on a
unimodular Lie group $G$. We define Besov spaces corresponding to the subLaplacian
$\Delta=\sum X_i^2$ both with positive and negative smoothness. The atomic
decomposition of the spaces is given. In consequence we get the distributional
characterization of the Hausdorff dimension of Borel subsets with the Haar measure
zero.
Keywords:Besov spaces, subelliptic operators, CarnotCarathÃ©odory metric, Hausdorff dimension Categories:46E35, 43A15, 28A78 

6. CJM 1999 (vol 51 pp. 673)
 Barlow, Martin T.; Bass, Richard F.

Brownian Motion and Harmonic Analysis on Sierpinski Carpets
We consider a class of fractal subsets of $\R^d$ formed in a manner
analogous to the construction of the Sierpinski carpet. We prove a
uniform Harnack inequality for positive harmonic functions; study
the heat equation, and obtain upper and lower bounds on the heat
kernel which are, up to constants, the best possible; construct a
locally isotropic diffusion $X$ and determine its basic properties;
and extend some classical Sobolev and Poincar\'e inequalities to
this setting.
Keywords:Sierpinski carpet, fractal, Hausdorff dimension, spectral dimension, Brownian motion, heat equation, harmonic functions, potentials, reflecting Brownian motion, coupling, Harnack inequality, transition densities, fundamental solutions Categories:60J60, 60B05, 60J35 
