Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CJM digital archive with keyword Hardy space

  Expand all        Collapse all Results 1 - 9 of 9

1. CJM Online first

Cao, Jun; Jiang, Renjin; Yang, Dachun; Zhang, Junqiang
Non-tangential Maximal Function Characterizations of Hardy Spaces Associated with Degenerate Elliptic Operators
Let $w$ be either in the Muckenhoupt class of $A_2(\mathbb{R}^n)$ weights or in the class of $QC(\mathbb{R}^n)$ weights, and $L_w:=-w^{-1}\mathop{\mathrm{div}}(A\nabla)$ the degenerate elliptic operator on the Euclidean space $\mathbb{R}^n$, $n\ge 2$. In this article, the authors establish the non-tangential maximal function characterization of the Hardy space $H_{L_w}^p(\mathbb{R}^n)$ associated with $L_w$ for $p\in (0,1]$ and, when $p\in (\frac{n}{n+1},1]$ and $w\in A_{q_0}(\mathbb{R}^n)$ with $q_0\in[1,\frac{p(n+1)}n)$, the authors prove that the associated Riesz transform $\nabla L_w^{-1/2}$ is bounded from $H_{L_w}^p(\mathbb{R}^n)$ to the weighted classical Hardy space $H_w^p(\mathbb{R}^n)$.

Keywords:degenerate elliptic operator, Hardy space, square function, maximal function, molecule, Riesz transform
Categories:42B30, 42B35, 35J70

2. CJM 2012 (vol 65 pp. 299)

Grafakos, Loukas; Miyachi, Akihiko; Tomita, Naohito
On Multilinear Fourier Multipliers of Limited Smoothness
In this paper, we prove certain $L^2$-estimate for multilinear Fourier multiplier operators with multipliers of limited smoothness. As a result, we extend the result of Calderón and Torchinsky in the linear theory to the multilinear case. The sharpness of our results and some related estimates in Hardy spaces are also discussed.

Keywords:multilinear Fourier multipliers, Hörmander multiplier theorem, Hardy spaces
Categories:42B15, 42B20

3. CJM 2011 (vol 64 pp. 1329)

Izuchi, Kei Ji; Nguyen, Quang Dieu; Ohno, Shûichi
Composition Operators Induced by Analytic Maps to the Polydisk
We study properties of composition operators induced by symbols acting from the unit disk to the polydisk. This result will be involved in the investigation of weighted composition operators on the Hardy space on the unit disk and moreover be concerned with composition operators acting from the Bergman space to the Hardy space on the unit disk.

Keywords:composition operators, Hardy spaces, polydisk
Categories:47B33, 32A35, 30H10

4. CJM 2010 (vol 62 pp. 961)

Aleman, Alexandru; Duren, Peter; Martín, María J.; Vukotić, Dragan
Multiplicative Isometries and Isometric Zero-Divisors
For some Banach spaces of analytic functions in the unit disk (weighted Bergman spaces, Bloch space, Dirichlet-type spaces), the isometric pointwise multipliers are found to be unimodular constants. As a consequence, it is shown that none of those spaces have isometric zero-divisors. Isometric coefficient multipliers are also investigated.

Keywords:Banach spaces of analytic functions, Hardy spaces, Bergman spaces, Bloch space, Dirichlet space, Dirichlet-type spaces, pointwise multipliers, coefficient multipliers, isometries, isometric zero-divisors
Categories:30H05, 46E15

5. CJM 2009 (vol 62 pp. 439)

Sundhäll, Marcus; Tchoundja, Edgar
On Hankel Forms of Higher Weights: The Case of Hardy Spaces
In this paper we study bilinear Hankel forms of higher weights on Hardy spaces in several dimensions. (The Schatten class Hankel forms of higher weights on weighted Bergman spaces have already been studied by Janson and Peetre for one dimension and by Sundhäll for several dimensions). We get a full characterization of Schatten class Hankel forms in terms of conditions for the symbols to be in certain Besov spaces. Also, the Hankel forms are bounded and compact if and only if the symbols satisfy certain Carleson measure criteria and vanishing Carleson measure criteria, respectively.

Keywords:Hankel forms, Schatten—von Neumann classes, Bergman spaces, Hardy spaces, Besov spaces, transvectant, unitary representations, Möbius group
Categories:32A25, 32A35, 32A37, 47B35

6. CJM 2009 (vol 62 pp. 202)

Tang, Lin
Interior $h^1$ Estimates for Parabolic Equations with $\operatorname{LMO}$ Coefficients
In this paper we establish \emph{a priori} $h^1$-estimates in a bounded domain for parabolic equations with vanishing $\operatorname{LMO}$ coefficients.

Keywords:parabolic operator, Hardy space, parabolic, singular integrals and commutators
Categories:35K20, 35B65, 35R05

7. CJM 2003 (vol 55 pp. 1264)

Havin, Victor; Mashreghi, Javad
Admissible Majorants for Model Subspaces of $H^2$, Part II: Fast Winding of the Generating Inner Function
This paper is a continuation of Part I [6]. We consider the model subspaces $K_\Theta=H^2\ominus\Theta H^2$ of the Hardy space $H^2$ generated by an inner function $\Theta$ in the upper half plane. Our main object is the class of admissible majorants for $K_\Theta$, denoted by Adm $\Theta$ and consisting of all functions $\omega$ defined on $\mathbb{R}$ such that there exists an $f \ne 0$, $f \in K_\Theta$ satisfying $|f(x)|\leq\omega(x)$ almost everywhere on $\mathbb{R}$. Firstly, using some simple Hilbert transform techniques, we obtain a general multiplier theorem applicable to any $K_\Theta$ generated by a meromorphic inner function. In contrast with [6], we consider the generating functions $\Theta$ such that the unit vector $\Theta(x)$ winds up fast as $x$ grows from $-\infty$ to $\infty$. In particular, we consider $\Theta=B$ where $B$ is a Blaschke product with ``horizontal'' zeros, i.e., almost uniformly distributed in a strip parallel to and separated from $\mathbb{R}$. It is shown, among other things, that for any such $B$, any even $\omega$ decreasing on $(0,\infty)$ with a finite logarithmic integral is in Adm $B$ (unlike the ``vertical'' case treated in [6]), thus generalizing (with a new proof) a classical result related to Adm $\exp(i\sigma z)$, $\sigma>0$. Some oscillating $\omega$'s in Adm $B$ are also described. Our theme is related to the Beurling-Malliavin multiplier theorem devoted to Adm $\exp(i\sigma z)$, $\sigma>0$, and to de Branges' space $\mathcal{H}(E)$.

Keywords:Hardy space, inner function, shift operator, model, subspace, Hilbert transform, admissible majorant
Categories:30D55, 47A15

8. CJM 2003 (vol 55 pp. 1231)

Havin, Victor; Mashreghi, Javad
Admissible Majorants for Model Subspaces of $H^2$, Part I: Slow Winding of the Generating Inner Function
A model subspace $K_\Theta$ of the Hardy space $H^2 = H^2 (\mathbb{C}_+)$ for the upper half plane $\mathbb{C}_+$ is $H^2(\mathbb{C}_+) \ominus \Theta H^2(\mathbb{C}_+)$ where $\Theta$ is an inner function in $\mathbb{C}_+$. A function $\omega \colon \mathbb{R}\mapsto[0,\infty)$ is called an admissible majorant for $K_\Theta$ if there exists an $f \in K_\Theta$, $f \not\equiv 0$, $|f(x)|\leq \omega(x)$ almost everywhere on $\mathbb{R}$. For some (mainly meromorphic) $\Theta$'s some parts of Adm $\Theta$ (the set of all admissible majorants for $K_\Theta$) are explicitly described. These descriptions depend on the rate of growth of $\arg \Theta$ along $\mathbb{R}$. This paper is about slowly growing arguments (slower than $x$). Our results exhibit the dependence of Adm $B$ on the geometry of the zeros of the Blaschke product $B$. A complete description of Adm $B$ is obtained for $B$'s with purely imaginary (``vertical'') zeros. We show that in this case a unique minimal admissible majorant exists.

Keywords:Hardy space, inner function, shift operator, model, subspace, Hilbert transform, admissible majorant
Categories:30D55, 47A15

9. CJM 1998 (vol 50 pp. 897)

Bloom, Walter R.; Xu, Zengfu
Fourier multipliers for local hardy spaces on Chébli-Trimèche hypergroups
In this paper we consider Fourier multipliers on local Hardy spaces $\qin$ $(0

Keywords:Fourier multipliers, Hardy spaces, hypergroup
Categories:43A62, 43A15, 43A32

© Canadian Mathematical Society, 2014 :