Expand all Collapse all | Results 1 - 2 of 2 |
1. CJM Online first
Minimal Generators of the Defining Ideal of the Rees Algebra Associated with a Rational Plane Parametrization with $\mu=2$ |
Minimal Generators of the Defining Ideal of the Rees Algebra Associated with a Rational Plane Parametrization with $\mu=2$ We exhibit a set of minimal generators of the defining ideal of the
Rees Algebra associated with the ideal of three bivariate homogeneous
polynomials parametrizing a proper rational curve in projective plane,
having a minimal syzygy of degree 2.
Keywords:Rees Algebras, rational plane curves, minimal generators Categories:13A30, 14H50 |
2. CJM 2000 (vol 52 pp. 123)
An Algorithm for Fat Points on $\mathbf{P}^2 Let $F$ be a divisor on the blow-up $X$ of $\pr^2$ at $r$ general
points $p_1, \dots, p_r$ and let $L$ be the total transform of a
line on $\pr^2$. An approach is presented for reducing the
computation of the dimension of the cokernel of the natural map
$\mu_F \colon \Gamma \bigl( \CO_X(F) \bigr) \otimes \Gamma \bigl(
\CO_X(L) \bigr) \to \Gamma \bigl( \CO_X(F) \otimes \CO_X(L) \bigr)$
to the case that $F$ is ample. As an application, a formula for
the dimension of the cokernel of $\mu_F$ is obtained when $r = 7$,
completely solving the problem of determining the modules in
minimal free resolutions of fat point subschemes\break
$m_1 p_1 + \cdots + m_7 p_7 \subset \pr^2$. All results hold for
an arbitrary algebraically closed ground field~$k$.
Keywords:Generators, syzygies, resolution, fat points, maximal rank, plane, Weyl group Categories:13P10, 14C99, 13D02, 13H15 |