CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword Bergman space

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2010 (vol 62 pp. 961)

Aleman, Alexandru; Duren, Peter; Martín, María J.; Vukotić, Dragan
Multiplicative Isometries and Isometric Zero-Divisors
For some Banach spaces of analytic functions in the unit disk (weighted Bergman spaces, Bloch space, Dirichlet-type spaces), the isometric pointwise multipliers are found to be unimodular constants. As a consequence, it is shown that none of those spaces have isometric zero-divisors. Isometric coefficient multipliers are also investigated.

Keywords:Banach spaces of analytic functions, Hardy spaces, Bergman spaces, Bloch space, Dirichlet space, Dirichlet-type spaces, pointwise multipliers, coefficient multipliers, isometries, isometric zero-divisors
Categories:30H05, 46E15

2. CJM 2009 (vol 62 pp. 439)

Sundhäll, Marcus; Tchoundja, Edgar
On Hankel Forms of Higher Weights: The Case of Hardy Spaces
In this paper we study bilinear Hankel forms of higher weights on Hardy spaces in several dimensions. (The Schatten class Hankel forms of higher weights on weighted Bergman spaces have already been studied by Janson and Peetre for one dimension and by Sundhäll for several dimensions). We get a full characterization of Schatten class Hankel forms in terms of conditions for the symbols to be in certain Besov spaces. Also, the Hankel forms are bounded and compact if and only if the symbols satisfy certain Carleson measure criteria and vanishing Carleson measure criteria, respectively.

Keywords:Hankel forms, Schatten—von Neumann classes, Bergman spaces, Hardy spaces, Besov spaces, transvectant, unitary representations, Möbius group
Categories:32A25, 32A35, 32A37, 47B35

3. CJM 2009 (vol 61 pp. 190)

Lu, Yufeng; Shang, Shuxia
Bounded Hankel Products on the Bergman Space of the Polydisk
We consider the problem of determining for which square integrable functions $f$ and $g$ on the polydisk the densely defined Hankel product $H_{f}H_g^\ast$ is bounded on the Bergman space of the polydisk. Furthermore, we obtain similar results for the mixed Haplitz products $H_{g}T_{\bar{f}}$ and $T_{f}H_{g}^{*}$, where $f$ and $g$ are square integrable on the polydisk and $f$ is analytic.

Keywords:Toeplitz operator, Hankel operator, Haplitz products, Bergman space, polydisk
Categories:47B35, 47B47

© Canadian Mathematical Society, 2014 : https://cms.math.ca/