CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword Banach algebra

  Expand all        Collapse all Results 1 - 5 of 5

1. CJM 2013 (vol 65 pp. 783)

Garcés, Jorge J.; Peralta, Antonio M.
Generalised Triple Homomorphisms and Derivations
We introduce generalised triple homomorphism between Jordan Banach triple systems as a concept which extends the notion of generalised homomorphism between Banach algebras given by K. Jarosz and B.E. Johnson in 1985 and 1987, respectively. We prove that every generalised triple homomorphism between JB$^*$-triples is automatically continuous. When particularised to C$^*$-algebras, we rediscover one of the main theorems established by B.E. Johnson. We shall also consider generalised triple derivations from a Jordan Banach triple $E$ into a Jordan Banach triple $E$-module, proving that every generalised triple derivation from a JB$^*$-triple $E$ into itself or into $E^*$ is automatically continuous.

Keywords:generalised homomorphism, generalised triple homomorphism, generalised triple derivation, Banach algebra, Jordan Banach triple, C$^*$-algebra, JB$^*$-triple
Categories:46L05, 46L70, 47B48, 17C65, 46K70, 46L40, 47B47, 47B49

2. CJM 2012 (vol 65 pp. 1043)

Hu, Zhiguo; Neufang, Matthias; Ruan, Zhong-Jin
Convolution of Trace Class Operators over Locally Compact Quantum Groups
We study locally compact quantum groups $\mathbb{G}$ through the convolution algebras $L_1(\mathbb{G})$ and $(T(L_2(\mathbb{G})), \triangleright)$. We prove that the reduced quantum group $C^*$-algebra $C_0(\mathbb{G})$ can be recovered from the convolution $\triangleright$ by showing that the right $T(L_2(\mathbb{G}))$-module $\langle K(L_2(\mathbb{G}) \triangleright T(L_2(\mathbb{G}))\rangle$ is equal to $C_0(\mathbb{G})$. On the other hand, we show that the left $T(L_2(\mathbb{G}))$-module $\langle T(L_2(\mathbb{G}))\triangleright K(L_2(\mathbb{G})\rangle$ is isomorphic to the reduced crossed product $C_0(\widehat{\mathbb{G}}) \,_r\!\ltimes C_0(\mathbb{G})$, and hence is a much larger $C^*$-subalgebra of $B(L_2(\mathbb{G}))$. We establish a natural isomorphism between the completely bounded right multiplier algebras of $L_1(\mathbb{G})$ and $(T(L_2(\mathbb{G})), \triangleright)$, and settle two invariance problems associated with the representation theorem of Junge-Neufang-Ruan (2009). We characterize regularity and discreteness of the quantum group $\mathbb{G}$ in terms of continuity properties of the convolution $\triangleright$ on $T(L_2(\mathbb{G}))$. We prove that if $\mathbb{G}$ is semi-regular, then the space $\langle T(L_2(\mathbb{G}))\triangleright B(L_2(\mathbb{G}))\rangle$ of right $\mathbb{G}$-continuous operators on $L_2(\mathbb{G})$, which was introduced by Bekka (1990) for $L_{\infty}(G)$, is a unital $C^*$-subalgebra of $B(L_2(\mathbb{G}))$. In the representation framework formulated by Neufang-Ruan-Spronk (2008) and Junge-Neufang-Ruan, we show that the dual properties of compactness and discreteness can be characterized simultaneously via automatic normality of quantum group bimodule maps on $B(L_2(\mathbb{G}))$. We also characterize some commutation relations of completely bounded multipliers of $(T(L_2(\mathbb{G})), \triangleright)$ over $B(L_2(\mathbb{G}))$.

Keywords:locally compact quantum groups and associated Banach algebras
Categories:22D15, 43A30, 46H05

3. CJM 2010 (vol 62 pp. 845)

Samei, Ebrahim; Spronk, Nico; Stokke, Ross
Biflatness and Pseudo-Amenability of Segal Algebras
We investigate generalized amenability and biflatness properties of various (operator) Segal algebras in both the group algebra, $L^1(G)$, and the Fourier algebra, $A(G)$, of a locally compact group~$G$.

Keywords:Segal algebra, pseudo-amenable Banach algebra, biflat Banach algebra
Categories:43A20, 43A30, 46H25, 46H10, 46H20, 46L07

4. CJM 2009 (vol 62 pp. 646)

Rupp, R.; Sasane, A.
Reducibility in AR(K), CR(K), and A(K)
Let $K$ denote a compact real symmetric subset of $\mathbb{C}$ and let $A_{\mathbb R}(K)$ denote the real Banach algebra of all real symmetric continuous functions on $K$ that are analytic in the interior $K^\circ$ of $K$, endowed with the supremum norm. We characterize all unimodular pairs $(f,g)$ in $A_{\mathbb R}(K)^2$ which are reducible. In addition, for an arbitrary compact $K$ in $\mathbb C$, we give a new proof (not relying on Banach algebra theory or elementary stable rank techniques) of the fact that the Bass stable rank of $A(K)$ is $1$. Finally, we also characterize all compact real symmetric sets $K$ such that $A_{\mathbb R}(K)$, respectively $C_{\mathbb R}(K)$, has Bass stable rank $1$.

Keywords:real Banach algebras, Bass stable rank, topological stable rank, reducibility
Categories:46J15, 19B10, 30H05, 93D15

5. CJM 2006 (vol 58 pp. 859)

Read, C. J.
Nonstandard Ideals from Nonstandard Dual Pairs for $L^1(\omega)$ and $l^1(\omega)$
The Banach convolution algebras $l^1(\omega)$ and their continuous counterparts $L^1(\bR^+,\omega)$ are much studied, because (when the submultiplicative weight function $\omega$ is radical) they are pretty much the prototypic examples of commutative radical Banach algebras. In cases of ``nice'' weights $\omega$, the only closed ideals they have are the obvious, or ``standard'', ideals. But in the general case, a brilliant but very difficult paper of Marc Thomas shows that nonstandard ideals exist in $l^1(\omega)$. His proof was successfully exported to the continuous case $L^1(\bR^+,\omega)$ by Dales and McClure, but remained difficult. In this paper we first present a small improvement: a new and easier proof of the existence of nonstandard ideals in $l^1(\omega)$ and $L^1(\bR^+,\omega)$. The new proof is based on the idea of a ``nonstandard dual pair'' which we introduce. We are then able to make a much larger improvement: we find nonstandard ideals in $L^1(\bR^+,\omega)$ containing functions whose supports extend all the way down to zero in $\bR^+$, thereby solving what has become a notorious problem in the area.

Keywords:Banach algebra, radical, ideal, standard ideal, semigroup
Categories:46J45, 46J20, 47A15

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/