1. CJM 2015 (vol 67 pp. 827)
 Kaniuth, Eberhard

The BochnerSchoenbergEberlein Property and Spectral Synthesis for Certain Banach Algebra Products
Associated with two commutative Banach algebras $A$ and $B$ and
a character $\theta$ of $B$ is a certain Banach algebra product
$A\times_\theta B$, which is a splitting extension of $B$ by
$A$. We investigate two topics for the algebra $A\times_\theta
B$ in relation to the corresponding ones of $A$ and $B$. The
first one is the BochnerSchoenbergEberlein property and the
algebra of BochnerSchoenbergEberlein functions on the spectrum,
whereas the second one concerns the wide range of spectral synthesis
problems for $A\times_\theta B$.
Keywords:commutative Banach algebra, splitting extension, Gelfand spectrum, set of synthesis, weak spectral set, multiplier algebra, BSEalgebra, BSEfunction Categories:46J10, 46J25, 43A30, 43A45 

2. CJM 2013 (vol 65 pp. 783)
 Garcés, Jorge J.; Peralta, Antonio M.

Generalised Triple Homomorphisms and Derivations
We introduce generalised triple homomorphism between Jordan Banach
triple systems as a concept which extends the notion of generalised homomorphism between
Banach algebras given by K. Jarosz and B.E. Johnson in 1985 and 1987, respectively.
We prove that every generalised triple homomorphism between JB$^*$triples
is automatically continuous. When particularised to C$^*$algebras, we rediscover
one of the main theorems established by B.E. Johnson. We shall also consider generalised
triple derivations from a Jordan Banach triple $E$ into a Jordan Banach triple $E$module,
proving that every generalised triple derivation from a JB$^*$triple $E$ into itself or into $E^*$
is automatically continuous.
Keywords:generalised homomorphism, generalised triple homomorphism, generalised triple derivation, Banach algebra, Jordan Banach triple, C$^*$algebra, JB$^*$triple Categories:46L05, 46L70, 47B48, 17C65, 46K70, 46L40, 47B47, 47B49 

3. CJM 2012 (vol 65 pp. 1043)
 Hu, Zhiguo; Neufang, Matthias; Ruan, ZhongJin

Convolution of Trace Class Operators over Locally Compact Quantum Groups
We study locally compact quantum groups $\mathbb{G}$ through the
convolution algebras $L_1(\mathbb{G})$ and $(T(L_2(\mathbb{G})),
\triangleright)$. We prove that the reduced quantum group
$C^*$algebra $C_0(\mathbb{G})$ can be recovered from the convolution
$\triangleright$ by showing that the right $T(L_2(\mathbb{G}))$module
$\langle K(L_2(\mathbb{G}) \triangleright T(L_2(\mathbb{G}))\rangle$ is
equal to $C_0(\mathbb{G})$. On the other hand, we show that the left
$T(L_2(\mathbb{G}))$module $\langle T(L_2(\mathbb{G}))\triangleright
K(L_2(\mathbb{G})\rangle$ is isomorphic to the reduced crossed product
$C_0(\widehat{\mathbb{G}}) \,_r\!\ltimes C_0(\mathbb{G})$, and hence is
a much larger $C^*$subalgebra of $B(L_2(\mathbb{G}))$.
We establish a natural isomorphism between the completely bounded
right multiplier algebras of $L_1(\mathbb{G})$ and
$(T(L_2(\mathbb{G})), \triangleright)$, and settle two invariance
problems associated with the representation theorem of
JungeNeufangRuan (2009). We characterize regularity and discreteness
of the quantum group $\mathbb{G}$ in terms of continuity properties of
the convolution $\triangleright$ on $T(L_2(\mathbb{G}))$. We prove
that if $\mathbb{G}$ is semiregular, then the space
$\langle T(L_2(\mathbb{G}))\triangleright B(L_2(\mathbb{G}))\rangle$ of right
$\mathbb{G}$continuous operators on $L_2(\mathbb{G})$, which was
introduced by Bekka (1990) for $L_{\infty}(G)$, is a unital $C^*$subalgebra
of $B(L_2(\mathbb{G}))$. In the representation framework formulated by
NeufangRuanSpronk (2008) and JungeNeufangRuan, we show that the
dual properties of compactness and discreteness can be characterized
simultaneously via automatic normality of quantum group bimodule maps
on $B(L_2(\mathbb{G}))$. We also characterize some commutation
relations of completely bounded multipliers of $(T(L_2(\mathbb{G})),
\triangleright)$ over $B(L_2(\mathbb{G}))$.
Keywords:locally compact quantum groups and associated Banach algebras Categories:22D15, 43A30, 46H05 

4. CJM 2010 (vol 62 pp. 845)
 Samei, Ebrahim; Spronk, Nico; Stokke, Ross

Biflatness and PseudoAmenability of Segal Algebras
We investigate generalized amenability and biflatness properties of various (operator) Segal algebras in both the group algebra, $L^1(G)$, and the Fourier algebra, $A(G)$, of a locally compact group~$G$.
Keywords:Segal algebra, pseudoamenable Banach algebra, biflat Banach algebra Categories:43A20, 43A30, 46H25, 46H10, 46H20, 46L07 

5. CJM 2009 (vol 62 pp. 646)
 Rupp, R.; Sasane, A.

Reducibility in A_{R}(K), C_{R}(K), and A(K)
Let $K$ denote a compact real symmetric subset of $\mathbb{C}$ and let
$A_{\mathbb R}(K)$ denote the real Banach algebra of all real
symmetric continuous functions on $K$ that are analytic in the
interior $K^\circ$ of $K$, endowed with the supremum norm. We
characterize all unimodular pairs $(f,g)$ in $A_{\mathbb R}(K)^2$
which are reducible.
In addition, for an arbitrary compact $K$ in $\mathbb C$, we give a
new proof (not relying on Banach algebra theory or elementary stable
rank techniques) of the fact that the Bass stable rank of $A(K)$ is
$1$.
Finally, we also characterize all compact real symmetric sets $K$ such
that $A_{\mathbb R}(K)$, respectively $C_{\mathbb R}(K)$, has Bass
stable rank $1$.
Keywords:real Banach algebras, Bass stable rank, topological stable rank, reducibility Categories:46J15, 19B10, 30H05, 93D15 

6. CJM 2006 (vol 58 pp. 859)
 Read, C. J.

Nonstandard Ideals from Nonstandard Dual Pairs for $L^1(\omega)$ and $l^1(\omega)$
The Banach convolution algebras $l^1(\omega)$
and their continuous counterparts $L^1(\bR^+,\omega)$
are much
studied, because (when the submultiplicative weight function
$\omega$ is radical) they are pretty much the prototypic examples
of commutative radical Banach algebras. In cases of ``nice''
weights $\omega$, the only closed ideals they have are the obvious,
or ``standard'', ideals. But in the
general case, a brilliant but very difficult paper of Marc Thomas
shows that nonstandard ideals exist in $l^1(\omega)$. His
proof was successfully exported to the continuous case
$L^1(\bR^+,\omega)$ by Dales and McClure, but remained
difficult. In this paper we first present a small improvement: a
new and easier proof of the existence of nonstandard ideals in
$l^1(\omega)$ and $L^1(\bR^+,\omega)$. The new proof is based on
the idea of a ``nonstandard dual pair'' which we introduce.
We are then able to make a much larger improvement: we
find nonstandard ideals in $L^1(\bR^+,\omega)$ containing functions
whose supports extend all the way down to zero in $\bR^+$, thereby solving
what has become a notorious problem in the area.
Keywords:Banach algebra, radical, ideal, standard ideal, semigroup Categories:46J45, 46J20, 47A15 
