CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CJM digital archive with keyword $q$-ultraspherical polynomials

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2010 (vol 63 pp. 181)

Ismail, Mourad E. H.; Obermaier, Josef
Characterizations of Continuous and Discrete $q$-Ultraspherical Polynomials
We characterize the continuous $q$-ultraspherical polynomials in terms of the special form of the coefficients in the expansion $\mathcal{D}_q P_n(x)$ in the basis $\{P_n(x)\}$, $\mathcal{D}_q$ being the Askey--Wilson divided difference operator. The polynomials are assumed to be symmetric, and the connection coefficients are multiples of the reciprocal of the square of the $L^2$ norm of the polynomials. A similar characterization is given for the discrete $q$-ultraspherical polynomials. A new proof of the evaluation of the connection coefficients for big $q$-Jacobi polynomials is given.

Keywords:continuous $q$-ultraspherical polynomials, big $q$-Jacobi polynomials, discrete $q$-ultra\-spherical polynomials, Askey--Wilson operator, $q$-difference operator, recursion coefficients
Categories:33D45, 42C05

2. CJM 2002 (vol 54 pp. 709)

Ismail, Mourad E. H.; Stanton, Dennis
$q$-Integral and Moment Representations for $q$-Orthogonal Polynomials
We develop a method for deriving integral representations of certain orthogonal polynomials as moments. These moment representations are applied to find linear and multilinear generating functions for $q$-orthogonal polynomials. As a byproduct we establish new transformation formulas for combinations of basic hypergeometric functions, including a new representation of the $q$-exponential function $\mathcal{E}_q$.

Keywords:$q$-integral, $q$-orthogonal polynomials, associated polynomials, $q$-difference equations, generating functions, Al-Salam-Chihara polynomials, continuous $q$-ultraspherical polynomials
Categories:33D45, 33D20, 33C45, 30E05

3. CJM 1997 (vol 49 pp. 520)

Ismail, Mourad E. H.; Stanton, Dennis
Classical orthogonal polynomials as moments
We show that the Meixner, Pollaczek, Meixner-Pollaczek, the continuous $q$-ultraspherical polynomials and Al-Salam-Chihara polynomials, in certain normalization, are moments of probability measures. We use this fact to derive bilinear and multilinear generating functions for some of these polynomials. We also comment on the corresponding formulas for the Charlier, Hermite and Laguerre polynomials.

Keywords:Classical orthogonal polynomials, \ACP, continuous, $q$-ultraspherical polynomials, generating functions, multilinear, generating functions, transformation formulas, umbral calculus
Categories:33D45, 33D20, 33C45, 30E05

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/