DIMITRIS KOUKOULOPOULOS, Université de Montréal
Groups structures of elliptic curves over finite fields
It is known that an elliptic curve E over a finite field \mathbb{F}_{p} admits a group structure which is abelian and has rank at most 2 . Therefore there are integers m and k such that the group of points of E over \mathbb{F}_{p} is isomorphic to $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m k \mathbb{Z}$. In the converse direction, Rück characterized which pairs of integers (m, k) can arise this way. It is then natural to ask how many of such pairs exist with $m \leq M$ and $k \leq K$. Call the number of such pairs $S(M, K)$. Banks, Pappalardi and Shparlinski studied the size of $S(M, K)$, which they related to a problem about the existence of primes in short arithmetic progressions. Based on standard heuristics about primes, they made a conjecture about the size of $S(M, K)$ and proved some partial results towards it. In this talk, I will discuss recent progress in this problem which leads to an improvement of the results of Banks, Pappalardi and Shparlinski, as well as to a proof of their conjecture in certain ranges of M and K. This is joint work with V . Chandee, C. David and E. Smith.

