I will give an update on the exact values of $D_{\lambda}(v, 5, 2)$.

I will also talk about some new results on improving the known bounds on the size of constant weight codes (packings with $\lambda = 1$) by using optimization.

ILIYA BLUSKOV, University of Northern British Columbia, Department of Mathematics, Prince George, BC, V2N 4Z9 *On Packing Designs*

A 2- (v, k, λ) packing design, $(\mathcal{V}, \mathcal{B})$, is a set \mathcal{V} (with elements called *points*) and a collection \mathcal{B} of k-subsets of \mathcal{V} (called *blocks*) with the property that every unordered pair of points occurs in at most λ blocks. We denote the maximum possible size of \mathcal{B} by $D_{\lambda}(v, k, 2)$ and call it the *packing number* for these parameters. We are interested in finding either the exact value of $D_{\lambda}(v, k, 2)$ or a good lower bound on it.