BRETT STEVENS, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6 Octahedral Designs

An octahedral design of order v, or oc v, is a decomposition of all oriented triples on v points into oriented octahedra. Hanani settled the existence of these designs in the unoriented case. We show that an oc v exists if and only if $v \equiv 1,2,6(\bmod 8)$ (the admissible numbers), and moreover the constructed oc v are indecomposble, i.e., the octahedra cannot be paired into mirror images. We show that an oc v with a subdesign oc u exists if and only if v and u are admissible and $v \geq u+4$.
This is joint work with Prof. V. Linek.

