TSUYOSHI ANDO, Hokkaido University, Sapporo, Japan
Indefinite Contractions
Given a matrix A, define the triple $\left(\pi_{-}(A), \pi_{0}(A), \pi_{+}(A)\right)$ as its inertia with respect to the unit circle where $\pi_{-}(A)$ (resp. $\pi_{+}(A)$) is the number of eigenvalues of A inside (resp. outside) the unit disc while $\pi_{0}(A)$ is the number of eigenvalues on the unit circle.
An invertible Hermitian matrix H gives rise to an (indefinite) inner product. A matrix A is called an H-(strict) contraction (or H-contractive) if $H>A^{*} H A$. The most interesing case is that H is an involution, $H^{2}=I$. We use J for H in such a case. It is well known that a matrix A is H-contractive for suitable H if and only if $\pi_{0}(A)=0$. Though H is not determined uniquely by A (even up to positive scalar multiple), $\pi_{-}(A)$ must coincide with the number of positive eigenvalues of H.
If A is J-contractive, so is A^{*} and hence $A^{*} A$. Therefore A and its modulus $|A| \equiv\left(A^{*} A\right)^{1 / 2}$ have the same inertia. But this property does not seem sufficient to guarantee J-contractivity of A for a suitable involution J. Other necessary conditions are presented.
If H-contractivity of a matrix A always guarantees that of its adjoint A^{*} then H is necessarily a scalar multiple of an involution. A characterization is given for a set of matrices coincides with the set of H-contractions for (unknown) H.

