TSUYOSHI ANDO, Hokkaido University, Sapporo, Japan Indefinite Contractions

Given a matrix A, define the triple $(\pi_{-}(A), \pi_{0}(A), \pi_{+}(A))$ as its inertia with respect to the unit circle where $\pi_{-}(A)$ (resp. $\pi_{+}(A)$) is the number of eigenvalues of A inside (resp. outside) the unit disc while $\pi_{0}(A)$ is the number of eigenvalues on the unit circle.

An invertible Hermitian matrix H gives rise to an (indefinite) inner product. A matrix A is called an H-(strict) contraction (or H-contractive) if $H > A^*HA$. The most interesing case is that H is an involution, $H^2 = I$. We use J for H in such a case. It is well known that a matrix A is H-contractive for suitable H if and only if $\pi_0(A) = 0$. Though H is not determined uniquely by A (even up to positive scalar multiple), $\pi_-(A)$ must coincide with the number of positive eigenvalues of H.

If A is J-contractive, so is A^* and hence A^*A . Therefore A and its modulus $|A| \equiv (A^*A)^{1/2}$ have the same inertia. But this property does not seem sufficient to guarantee J-contractivity of A for a suitable involution J. Other necessary conditions are presented.

If *H*-contractivity of a matrix *A* always guarantees that of its adjoint A^* then *H* is necessarily a scalar multiple of an involution. A characterization is given for a set of matrices coincides with the set of *H*-contractions for (unknown) *H*.