SHAUN FALLAT, Department of Mathematics & Statistics, University of Regina, Regina, SK S4S 0A2 *Compressions of totally positive matrices*

A matrix is called totally positive if all of its minors are positive. If a matrix A is partitioned as $A = (A_{ij})$, i, j = 1, 2, ..., k, in which each block A_{ij} is $n \times n$, then the $k \times k$ compressed matrix is given by $(\det A_{ij})$. It is well-known that if A is positive semidefinite, then the compressed matrix is also positive semidefinite and that the determinant of the compressed matrix is larger than det A. For a totally positive matrix A, we show that the compressed matrix is also totally positive and we verify that the determinant of the compressed matrix exceeds det A when k = 2, 3. An extension that allows for overlapping blocks is also presented when k = 2, 3. For $k \ge 4$ we verify, by example, that the $k \times k$ compressed matrix of a totally positive matrix need not be totally positive.