SHAUN FALLAT, Department of Mathematics \& Statistics, University of Regina, Regina, SK S4S 0A2
Compressions of totally positive matrices
A matrix is called totally positive if all of its minors are positive. If a matrix A is partitioned as $A=\left(A_{i j}\right), i, j=1,2, \ldots, k$, in which each block $A_{i j}$ is $n \times n$, then the $k \times k$ compressed matrix is given by $\left(\operatorname{det} A_{i j}\right)$. It is well-known that if A is positive semidefinite, then the compressed matrix is also positive semidefinite and that the determinant of the compressed matrix is larger than $\operatorname{det} A$. For a totally positive matrix A, we show that the compressed matrix is also totally positive and we verify that the determinant of the compressed matrix exceeds $\operatorname{det} A$ when $k=2,3$. An extension that allows for overlapping blocks is also presented when $k=2,3$. For $k \geq 4$ we verify, by example, that the $k \times k$ compressed matrix of a totally positive matrix need not be totally positive.

