PETER GIBSON, York University, 4700 Keele Street, Toronto, ON M3J 1P3 *Fast iterative Gaussian quadrature*

We construct a family \mathcal{F} of probability distributions on the real line for which iterated Gaussian quadrature, where the number of nodes is approximately doubled at each iteration, is computationally more efficient than usual. For each $d\alpha$ in \mathcal{F} , the 2n + 1-point Gauss rule re-uses all the nodes of the *n*-point Gauss rule, the 2(2n + 1) + 1-point rule re-uses the nodes of the 2n + 1-point rule, and so on indefinitely. We show that it is possible to construct a distribution of this type for an essentially arbitrary sequence of nodes. This implies, for example, the existence of a distribution supported on [-1, 1] whose *n*-point Gauss rules have evenly spaced nodes, and (equivalently) whose orthogonal polynomials of degree *n* have evenly spaced zeros, for an unbounded sequence of indices *n*.

In addition we give an explicit construction for the subclass OF of F for which iteration of Gaussian quadrature re-uses, not only the nodes, but also the weights at each step. The classical distribution $\sqrt{1-x^2} dx$ is derived as a particular example.