The connectivity between a pair u, v of vertices in a graph G is the maximum number of pairwise internally disjoint $u-v$ paths in G. The average connectivity of G is the average connectivity between pairs of vertices of G taken over all pairs. Analogous concepts can be defined for digraphs. We survey known results on this subject and present several open/partially solved problems including: (i) the problem of finding the maximum connectivity of a subgraph in a graph with a given average connectivity; (ii) the problem of finding the maximum average connectivity among all orientations of a given graph G; (iii) the maximum average connectivity among all graphs with a given degree sequence.