CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

Homological Planes in the Grothendieck Ring of Varieties

  • Julien Sebag,
    Institut de recherche mathématique de Rennes , UMR 6625 du CNRS , Université de Rennes 1 , Campus de Beaulieu , 35042 Rennes cedex, France
Format:   LaTeX   MathJax   PDF  

Abstract

In this note, we identify, in the Grothendieck group of complex varieties $K_0(\mathrm Var_\mathbf{C})$, the classes of $\mathbf{Q}$-homological planes. Precisely, we prove that a connected smooth affine complex algebraic surface $X$ is a $\mathbf{Q}$-homological plane if and only if $[X]=[\mathbf{A}^2_\mathbf{C}]$ in the ring $K_0(\mathrm Var_\mathbf{C})$ and $\mathrm{Pic}(X)_\mathbf{Q}:=\mathrm{Pic}(X)\otimes_\mathbf{Z}\mathbf{Q}=0$.
Keywords: motivic nearby cycles, motivic Milnor fiber, nearby motives motivic nearby cycles, motivic Milnor fiber, nearby motives
MSC Classifications: 14E05, 14R10 show english descriptions Rational and birational maps
Affine spaces (automorphisms, embeddings, exotic structures, cancellation problem)
14E05 - Rational and birational maps
14R10 - Affine spaces (automorphisms, embeddings, exotic structures, cancellation problem)
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/