Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-27T21:22:28.815Z Has data issue: false hasContentIssue false

Indicators, Chains, Antichains, Ramsey Property

Published online by Cambridge University Press:  20 November 2018

Miodrag Sokić*
Affiliation:
Mathematics Department, California Institute of Technology, Pasadena, California 91125, USA e-mail: msokic@caltech.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce two Ramsey classes of finite relational structures. The first class contains finite structures of the form $\left( A,\,\left( {{I}_{i}} \right)_{i=1}^{n},\le ,\left( {{\underline{\prec }}_{i}} \right)_{i=1}^{n} \right)$, where $\le$ is a total ordering on $A$ and ${{\underline{\prec }}_{i}}$ is a linear ordering on the set $\left\{ a\,\in \,A\,:\,{{I}_{i}}\left( a \right) \right\}$. The second class contains structures of the form a $\left( a,\le ,\left( {{i}_{i}} \right)_{i=1}^{n},\underline{\prec } \right)$, where $\left( A,\,\le \right)$ is a weak ordering and $\underline{\prec }$ is a linear ordering on $A$ such that $A$ is partitioned by $\left\{ a\,\in \,A\,:\,{{I}_{i}}\left( a \right) \right\}$ into maximal chains in the partial ordering $\le$ and each $\left\{ a\,\in \,A\,:\,{{I}_{i}}\left( a \right) \right\}$ is an interval with respect to $\underline{\prec }$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2014

References

[1] Abramson, F. G., Harrington, L. A., Models without indiscernibles. J. Symbolic Logic 43 (1978), no. 3, 572600. http://dx.doi.org/10.2307/2273534 Google Scholar
[2] Graham, R. L., Rotschild, B. L., and Spencer, J. H., Ramsey theory. Second ed.,Wiley-Interscience Series in Discrete Mathematics and Optimization,Wiley-Interscience, New York, 1990.Google Scholar
[3] Nešetřil, J., Metric spaces are Ramsey. European J. Combin. 28 (2007), no. 1, 457468. http://dx.doi.org/10.1016/j.ejc.2004.11.003 Google Scholar
[4] Nešetřil, J., Ramsey classes of topological spaces and metric spaces. Ann. Pure Appl. Logic 143 (2006), no. 13, 147154. http://dx.doi.org/10.1016/j.apal.2005.07.004 Google Scholar
[5] Nešetřil, J. and Rödl, V., Partitions of finite relational and set systems. J. Combinatorial Theory Ser. A 22 (1977), no. 3, 289312.Google Scholar
[6] Nešetřil, J. and Rödl, V., Ramsey classes of set systems. J. Comb. Theory Ser. A 34 (1983), no. 2, 183201. http://dx.doi.org/10.1016/0097-3165(83)90055-9 Google Scholar
[7] Schmerl, J., Countable homogeneous partially ordered sets. Algebra Universalis 9 (1979), no. 3,317321. http://dx.doi.org/10.1007/BF02488043 Google Scholar
[8] Sokić, M., Ramsey property of posets and related structures. Ph.D. dissertation, University of Toronto, ProQuest LLC, Ann Arbor, MI, 2010.Google Scholar
[9] Sokić, M., Ramsey properties of finite posets. Order 29 (2012), no. 1, 130. http://dx.doi.org/10.1007/s11083-011-9195-3 Google Scholar
[10] Sokić, M., Ramsey properties of finite posets II. Order 29 (2012), no. 1, 3147. http://dx.doi.org/10.1007/s11083-011-9196-2 Google Scholar
[11] Sokić, M., Ramsey property, ultrametric spaces, finite posets, and universal minimal flows. Israel J. Math. 194 (2013), no. 2, 609640. http://dx.doi.org/10.1007/s11856-012-0101-5 Google Scholar