CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

Curvature of $K$-contact Semi-Riemannian Manifolds

  Published:2013-07-22
 Printed: Jun 2014
  • Domenico Perrone,
    Universitá del Salento, Dipartimento di Matematica e Fisica ‟E. De Giorgi”, Via Provinciale Lecce-Arnesano, 73100 Lecce, Italy
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   LaTeX   MathJax   PDF  

Abstract

In this paper we characterize $K$-contact semi-Riemannian manifolds and Sasakian semi-Riemannian manifolds in terms of curvature. Moreover, we show that any conformally flat $K$-contact semi-Riemannian manifold is Sasakian and of constant sectional curvature $\kappa=\varepsilon$, where $\varepsilon =\pm 1$ denotes the causal character of the Reeb vector field. Finally, we give some results about the curvature of a $K$-contact Lorentzian manifold.
Keywords: contact semi-Riemannian structures, $K$-contact structures, conformally flat manifolds, Einstein Lorentzian-Sasaki manifolds contact semi-Riemannian structures, $K$-contact structures, conformally flat manifolds, Einstein Lorentzian-Sasaki manifolds
MSC Classifications: 53C50, 53C25, 53B30 show english descriptions Lorentz manifolds, manifolds with indefinite metrics
Special Riemannian manifolds (Einstein, Sasakian, etc.)
Lorentz metrics, indefinite metrics
53C50 - Lorentz manifolds, manifolds with indefinite metrics
53C25 - Special Riemannian manifolds (Einstein, Sasakian, etc.)
53B30 - Lorentz metrics, indefinite metrics
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/