CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds

  Published:2013-05-26
 Printed: Jun 2014
  • Emilio A. Lauret,
    Facultad de Matemática Astronomía y Física (FaMAF), Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   LaTeX   MathJax   PDF  

Abstract

Let $\Gamma_1$ and $\Gamma_2$ be Bieberbach groups contained in the full isometry group $G$ of $\mathbb{R}^n$. We prove that if the compact flat manifolds $\Gamma_1\backslash\mathbb{R}^n$ and $\Gamma_2\backslash\mathbb{R}^n$ are strongly isospectral then the Bieberbach groups $\Gamma_1$ and $\Gamma_2$ are representation equivalent, that is, the right regular representations $L^2(\Gamma_1\backslash G)$ and $L^2(\Gamma_2\backslash G)$ are unitarily equivalent.
Keywords: representation equivalent, strongly isospectrality, compact flat manifolds representation equivalent, strongly isospectrality, compact flat manifolds
MSC Classifications: 58J53, 22D10 show english descriptions Isospectrality
Unitary representations of locally compact groups
58J53 - Isospectrality
22D10 - Unitary representations of locally compact groups
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/