CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

Characterizations of Three Classes of Zero-Divisor Graphs

  Published:2011-05-30
 Printed: Mar 2012
  • John D. LaGrange,
    School of Natural Sciences, Indiana University Southeast, New Albany, Indiana 47150, USA
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   LaTeX   MathJax   PDF  

Abstract

The zero-divisor graph $\Gamma(R)$ of a commutative ring $R$ is the graph whose vertices consist of the nonzero zero-divisors of $R$ such that distinct vertices $x$ and $y$ are adjacent if and only if $xy=0$. In this paper, a characterization is provided for zero-divisor graphs of Boolean rings. Also, commutative rings $R$ such that $\Gamma(R)$ is isomorphic to the zero-divisor graph of a direct product of integral domains are classified, as well as those whose zero-divisor graphs are central vertex complete.
MSC Classifications: 13A99, 13M99 show english descriptions None of the above, but in this section
None of the above, but in this section
13A99 - None of the above, but in this section
13M99 - None of the above, but in this section
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/