CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

Inequalities for Eigenvalues of a General Clamped Plate Problem

  Published:2011-03-08
 Printed: Mar 2012
  • K. Ghanbari,
    Mathematics Department, Sahand University of Technology, Tabriz, Iran
  • B. Shekarbeigi,
    Mathematics Department, Sahand University of Technology, Tabriz, Iran
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF  

Abstract

Let $D$ be a connected bounded domain in $\mathbb{R}^n$. Let $0<\mu_1\leq\mu_2\leq\dots\leq\mu_k\leq\cdots$ be the eigenvalues of the following Dirichlet problem: $$ \begin{cases}\Delta^2u(x)+V(x)u(x)=\mu\rho(x)u(x),\quad x\in D u|_{\partial D}=\frac{\partial u}{\partial n}|_{\partial D}=0, \end{cases} $$ where $V(x)$ is a nonnegative potential, and $\rho(x)\in C(\bar{D})$ is positive. We prove the following inequalities: $$\mu_{k+1}\leq\frac{1}{k}\sum_{i=1}^k\mu_i+\Bigl[\frac{8(n+2)}{n^2}\Bigl(\frac{\rho_{\max}} {\rho_{\min}}\Bigr)^2\Bigr]^{1/2}\times \frac{1}{k}\sum_{i=1}^k[\mu_i(\mu_{k+1}-\mu_i)]^{1/2}, $$ $$\frac{n^2k^2}{8(n+2)}\leq \Bigl(\frac{\rho_{\max}}{\rho_{\min}}\Bigr)^2\Bigl[\sum_{i=1}^k\frac{\mu_i^{1/2}}{\mu_{k+1}-\mu_i}\Bigr] \times\sum_{i=1}^k\mu_i^{1/2}. $$
Keywords: biharmonic operator, eigenvalue, eigenvector, inequality biharmonic operator, eigenvalue, eigenvector, inequality
MSC Classifications: 35P15 show english descriptions Estimation of eigenvalues, upper and lower bounds 35P15 - Estimation of eigenvalues, upper and lower bounds
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/