CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

Generalized D-symmetric Operators II

  Published:2010-08-19
 Printed: Mar 2011
  • S. Bouali,
    Department of Mathematics and Informatics, Faculty of Sciences Kénitra, B. P. 133 Kénitra, Morocco
  • M. Ech-chad,
    Lycée mixte de Missour, 33250 Missour, Morocco
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF  

Abstract

Let $H$ be a separable, infinite-dimensional, complex Hilbert space and let $A, B\in{\mathcal L }(H)$, where ${\mathcal L}(H)$ is the algebra of all bounded linear operators on $H$. Let $\delta_{AB}\colon {\mathcal L}(H)\rightarrow {\mathcal L}(H)$ denote the generalized derivation $\delta_{AB}(X)=AX-XB$. This note will initiate a study on the class of pairs $(A,B)$ such that $\overline{{\mathcal R}(\delta_{AB})}= \overline{{\mathcal R}(\delta_{A^{\ast}B^{\ast}})}$.
Keywords: generalized derivation, adjoint, D-symmetric operator, normal operator generalized derivation, adjoint, D-symmetric operator, normal operator
MSC Classifications: 47B47, 47B10, 47A30 show english descriptions Commutators, derivations, elementary operators, etc.
Operators belonging to operator ideals (nuclear, $p$-summing, in the Schatten-von Neumann classes, etc.) [See also 47L20]
Norms (inequalities, more than one norm, etc.)
47B47 - Commutators, derivations, elementary operators, etc.
47B10 - Operators belonging to operator ideals (nuclear, $p$-summing, in the Schatten-von Neumann classes, etc.) [See also 47L20]
47A30 - Norms (inequalities, more than one norm, etc.)
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/