CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

Periods of Modular Forms and Imaginary Quadratic Base Change

  Published:2010-05-11
 Printed: Sep 2010
  • Mak Trifković,
    Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax  

Abstract

Let $f$ be a classical newform of weight $2$ on the upper half-plane $\mathcal H^{(2)}$, $E$ the corresponding strong Weil curve, $K$ a class number one imaginary quadratic field, and $F$ the base change of $f$ to $K$. Under a mild hypothesis on the pair $(f,K)$, we prove that the period ratio $\Omega_E/(\sqrt{|D|}\Omega_F)$ is in $\mathbb Q$. Here $\Omega_F$ is the unique minimal positive period of $F$, and $\Omega_E$ the area of $E(\mathbb C)$. The claim is a specialization to base change forms of a conjecture proposed and numerically verified by Cremona and Whitley.
MSC Classifications: 11F67 show english descriptions Special values of automorphic $L$-series, periods of modular forms, cohomology, modular symbols 11F67 - Special values of automorphic $L$-series, periods of modular forms, cohomology, modular symbols
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/